é
=
o
>
o
1
o
(@]
2]
(=)
<
I
o
2]

Low Latency Encoding Algorithm for Duo~Binary Turbo Codes with Tall Biting Trellises

Sook Min Park, Jagyoung Kwak, Kwyro Lee
Samsung Electronics, KAIST

Abstract - The low latency encoder for high data rate duo-binary
turbo codes with tail biting trellises is considered. Encoder hardware
architecture is proposed using inherent encoding property of duo-binary
turbo codes. And we showed that half of execution time as well as the
energy can be reduced with the proposed architecture.

1. Introduction

We focus on the duo-binary turbo encoder structure with tail
biting trellises. The general structure of duo-binary turbo codes
is same as binary one that two recursive systematic
convolutional(RSC) component codes are parallel concatenated via
an interleaver. For terminating each component RSC code, all the
codewords are encoded with the trellis starting at state zero.
After N information bits have been encoded, at the end of the
trellis, m termination bits have to be appended to the codeword
to terminate the trellis to state zero. Here, m is the number of
the shift registers of the component RSC code. To make each
shift registers zero state, recursive feedback of RSC code goes
directly through the encoder. Therefore, the termination bits do
not have any information and a rate loss occurs by the
termination. To avoid this rate loss, tail biting RSC codes is
proposed instead of terminated RSC codes [11[2]. In tail biting
RSC code, the trellis does not start and end at zero state.
However, it is required that the initial state of a codeword is the
same as the ending state. So, the code rate is higher than a
terminated RSC code by eliminating the additional tail bits for
termination. This scheme is accepted in the applications for high
data rate transmission such as mobile WiMAX (IEEE 802.16e
[3]). Although tail biting method prevents data rate loss for
additional termination bits, it makes encoding time twice to find
an initial state which is same as the last state. To improve
encoding delay, we focus on the calculation to meet the tail
biting boundary condition, Sy=S~, and propose the low latency
encoder algorithm for high data rate applications.

In the following section the principles of duo-binary turbo codes
with tail biting trellises are described. Then we propose low late
ncy encoder algorithm for the duo-binary turbo codes in the appl
ication of mobile WiMAX(IEEE 802.16e). And low latency encode
r algorithm is also represented to an efficient hardware architectu
re in the aspect of latency and power.

2, Low latency encoding algorithm for 802.16e
duo-binary turbo codes

In this section we propose the low latency encoding algorithm u
sing the inherent characteristic of 802.16e encoder structure. First,
we examine the inherent characteristic of 802.16e encoder structu
re. Then the low latency encoding algorithm and its hardware ar
chitecture will be described.

2.1 Characteristics of 802.16e duo-binary encoder
with tail biting trellises
We will consider the duo-binary RSC encoder of Figure 1. The
sequence of wu=(uw;, up~, ung) denotes information symbol
sequence and each information symbol consists of bit couple of
u" - (u(J

"

1 . .
u,) Hence, the information sequence can be represented
as follows:

0 1 0 o1 0 |
U= Uy U s 2y 5 Uy 50Uy Uyt s Uy Uy)

o)

Here N is the number of symbols in one frame, which is fed to

117

each RSC encoder. The state space representation of the encoder
is represented as follows:

S, =AS, +Bul
vl =CS, +Du

(2)
(3)

The complete solution of can be calculated by the superposition
of the zero input solution S = 4'S, and the zero state solution

o
s gt
Sn[T ;A Bu|

n-l

_ ol4l \zsl __ gn n-1-p. T
S, =S gl =y SO+§A Bu, @
The right part in (4) consists of the initial state calculation and
the zero-state calculation. By calculating Sy=Sp in (4) we can
calculate the initial state which is the same as the last state. So,
(4) becomes our final calculation to meet the basic tail biting
encoding property.

n-l
n - [
(4" +1,)S, ZOA u;)
where I, denotes the (mxm) identity matrix. In the equations of
(2) and (3), we can extract A,B,C and D matrices from 802.16e

encoder structure of Figure 1 as follows:,

1 01 11 000 10
A=|1 0 0|B=|0 1| C=|0 0 0| D=|0 1
010 0 1), 1 1 0/, 11 (6)

We can find an important clue in the characteristic of A matrix
to reduce the encoding latency for tail biting method. Multiplicati
on of matrix A repeats every 7 times, since A’ = I. Here [is th
e identical matrix. Using above property, the low latency algorith
m can be devised.

u’ v‘,(,_1 m l’""l
. S > »D» D » D> D
Y TR TR .,
u "y
V.S
»De v
np

<Figure 1> Constituent RSC Encoder for 802.16e Duo-Binary
Turbo Codes

2.2 Low latency encoding algorithm for 802.16e duo-bi
nary turbo codes

To find initial state which satisfy the tail biting boundary
condition, i.e. sv=sy, we should find zero state solution of right
part in Equation (5). Zero state solution for given data sequence
is described in the Equation (7)

Nl
St = 3 A0yt
i=0

=A""'Bu,+ A By, +-+ ABu, , +Bu,, (7

In this formula, we can see that matrix calculations should be pe
rformed per every given data at each time. Once SY' is compute

d from A" = I. Equation (7), we can easily find initial state in E
quation (5) by using lookup table. Since the conventional tail biti
ng method accumulates the input sequence serially, it executes m
atrix calculation every cycle. Additionally it consumes cycle time
as much as input sequence frame length. We utilize the character
istic of A matrix to reduce the latency and power consumption.
Equation (7) can be rewritten as ().

SV =AM By 4ty +o-)
+ AN B, vy g +-00)
R
+ AN B vu, gy +oo0)

+ ANV Bug vy, g, +)

8)

In Equation (8), input sequence, u is classified into 7 groups,
which have same remainder value of n modulo 7. Each group is
multiplied by 4“7 Here A" can be described in one o
f 7 combinations, 1e B, AB, A’B, A’B, A’B, A°B, and A°B usin
g the property of A'=]. We carry out the input accumulation first
followed by matrix calculation. In conventional tail biting procedu
re, every input symbol needs matrix calculation of 4“~"8. This
architecture not only saves the unnecessary matrix calculation for
every receiving data but also reduce the calculation time if we u
se parallel input. Equation (8) can be implemented as a simple ha
rdware. It can be separated into two independent parts. One is th
e accumulation part of input sequence, and the other is the matri
x calculation part with A, B matrices and accumulated input dat
a. At first, the input sequences are accumulated in accumulation
part. We considered parallel calculation that 16 or 32 data bits pa
ss to encoder. We denote this bit width as W. This input sequen
ce generates 7 accumulated data for next matrix calculation. The
matrix calculation part executes matrix calculation with these 7 a
ccumulated data and already calculated matrix, which are B, AB,
A’B, A°B, A*B, A°B, and A°B. Since we already know A and B
matrices from encoder structure, these 7 values can be calculated
prior to encoding process and also implemented in simple hardwa
re. Finally the output becomes the final state. In the following se
ction, we describe the low latency hardware architecture for com
puting zero state solution in Equation (8).

2.3 Hardware Architecture

We focus on the calculation of last state which takes time as
much as real encoding step. The task of this step is to find last
state after all the input data are encoded. The designed hardware
is partitioned into two parts, input accumulation and matrix
calculation in the (8). Whenever the data are ready input
accumulator works to accumulate all the input. After the last
input is accumulated, matrix calculation is executed only once.
Figure 2 shows the detailed architecture. Here W is the width of
parallel input data, and we assumed W=16 in this case. In many
case, input data are saved to then memory and these go to the
encoder. Many system use the bus width as 16 or 32, so we set
16 as our example. We have 7 matrices combinations(B, AB,
A'B, A°B, A'B, A°B, and A°B) and 2 bits per input symbol&x)
per each matrix, so we need 14 accumulators. In the case of
W=16, first 14 bits are passed to the accumulator and remaining
two bits should be EXORed with first two bits, after that these
are accumulated. At the next cycle, the latched outputs are
shifted one bit and then passed through EXOR block with next
16 incoming input data. As shown in Figure 2, we prepare 14

accumulators but the input bits are 16. We separate and

so 8 input bits go to 7 accumulators each. One input bit is
overlapped each, and to align the bit position, accumulated data
need to be shifted one bit for next accumulation. These are
continued until the end of input data. In this example, we do 1
bit shift, however, the general shift value is (W/2 -E). When the
last input data block is accumulated, those values are
re-arranged by the barrel shift in the matrix calculation block.
As input bit width W/2=8 and number of accumulator E=7 are
not matching, shift was executed every cycle. This also
generates the shifted accumulated output. So we need to reverse
back this output. In general, shift value is (N-1)/W%E, where is
the biggest integer. Finally, these data are added by final EXOR
to make the last state. This EXOR functlon is pre—defined by the
B, AB, AB ASB A4B AJB and A°B easily. By implementing
low latency encoder in real hardware, we can get the benefit of
latency and power consumption. Table 1 shows the

118

implementation results. W=16 and W=32 denote number of bits
which are calculated at the same time. Implemented hardware
can be partitioned into two parts, input accumulation and matrix
calculation. Whenever the data are ready, input accumulation
works to accumulate all the input. After the last input is
accumulated, matrix calculation is executed only once. So, this
effect is shown in activation column. The parentheses of fourth
and sixth column are normalized performance to original data.
When W=16 is used gate count increased 9.2 times. However, the
speed is 8 times faster and 51% of energy is enough in
comparison to the original case. When W=32, 10.2 times more
hardware, but 16 times faster and only 31% of energy is enough
to complete the task. The actual hardware for this task is so
small comparing to other hardware, such as turbo decoder, this
demerit is not so critical compared to its benefit in latency.

<Table 1> Hardware Complexity, Latency and Activation
Comparison Table

Gates Gates o
(input | (matrix | Gates | latency Activation
accu.) Cal.)
Original 37 2 37%2+xN
16 bits 148 193 378 1+1/8 37+ N+148(N/8)+193
32 bits 180 193 410 1+1/16 | 37+*N+180(N/16)+193

3. Conclusions

We proposed the low latency turbo encoder architecture for
high data rate applications. We can get the benefit of throughput
and power efficiency. We found that the encoding time for zero
state response was 8 times faster and 16 times faster in case of
16 bits and 32 bits memory output, respectively. The low latency
encoder for high data rate duo-binary turbo codes with tail
biting trellises is considered. Encoder hardware architecture is
proposed using inherent encoding property of duo-binary turbo
codes. And we showed that half of execution time as well as the
energy can be reduced with the proposed architecture.

u u
W@ w2y
) Ne
v e
E E
| shifts | [FFs J | FFs | |Shifs |
E} E)
Input Accumulator
Matrix calculation
A 4 h 4
Barrel _,I Barrel
L(N'D/WJ%E Shift Shift

State

<Figure 2> Hardware Architecture for Zero State Solution

[References]

[1] Critian Weiss, Cristian Bettstetter, Sven Riedel and Daniel J.
Costello,” Turbo decoding with tail-biting trellises,” 1998. ISSSE
98, 1998 URSI International Symposium on Signals, Systems, an
d Electronics,pp. 343-348 Oct. 1998.

[2] Christian Weifi, Christian Bettstetter, "Code Construction and
Decoding of Parallel Concatenated,” IEEE Transactions on Inform
ation Theory, pp 366-386, Jan. 2001.

[3] IEEE P802.16e/D3-2004 Draft Amendment to IEEE Standard f
or Local and metropolitan area networks Part 16: Air Interface a
nd Fixed and Mobile Broadband Wireless Access Systrems.

