Efficient Dynamic Slicing of Object-Oriented Program

Soon Hyung Park

Dept. of R&D, Korea Micro System
143-721, #1907 Technomart Bld,, 546-4 Guui--dong, Gwangjin-gu, Seoul
Tel: +82-2-3424-8420, Fax: +82-2-3424-8422, E-mail:nepaipark@nepaipark@hanmail.net

R EE R RS E e R
143-721, A/ EEA] FHT 7YF HA =0} EYG 1907
Tel: +82-2-3424-8420, Fax: +82-2-3424-8422, E-mail:nepaipark@nepaipark@hanmail.net

Abstract

Traditional slicing techniques make slices through
dependence graphs. They also improve the accuracy of
slices. However, traditional slicing techniques require many
vertices and edges in order to express a data
communication links. Therefore the graph becomes
complicated, and size of the slices is larger.

We propose the representation of a dynamic
object-oriented program dependence graph so as to process
the slicing of object-oriented programs that is composed of
related programs in order to process certain jobs.

The efficiency of the proposed efficient dynamic
object-oriented program dependence graph technique is
also compared with the dependence graph techniques
discussed previously. As a result, this is certifying that an
efficient dynamic object-oriented program dependence
graph is more efficient in comparison with the traditional
dynamic object-oriented program dependence graph.

Keywords:

Program Slicing; Dynamic Program Slicing; Program
Dependence Graph

1. Introduction

Program slicing is a progress of finding all statements
in a program P that may directly or indirectly affect the
value of a variable var at a point p. Accordingly, program
slicing is a useful technique with other applications in
program debugging by providing other programs that gather
statements relating to an interested variable in a program
[7]. Program slicing technique was proposed by Mark
Weiser for the first time [10]. He introduced the first static
slicing algorithm. It has been suggested a usage of this
concept in the program testing, maintenance, debugging,
and program understanding. During program debugging,
the objective of slicing is to reduce the debugging effort by
focusing the attention of the user on a subset of program
statements which are expected to contain faulty code. Since
debugging is performed by analyzing the statements of the
program when it is executed using a specific input[4].

Dynamic object-oriented program slicing is working to get
slices of object-oriented program by tracing the flow of
classes that is the core of object-oriented program and
objects when it is executed using a certain input data.
Generally it is important that in the object-oriented program
slicing we present polymorphism, dynamic binding, class
inheritance, etc [8].

Traditional program slicing techniques often use graphs
as a process of slicing to generate correct slices [9]. But the
traditional dynamic object-oriented program dependence
graph is complicated because that it need many vertexes
and edges. So it is very difficult that programmer and tester
use them to debug source programs.

In this paper, we proposed several processes to
compute the result of dynamic object-oriented program
dependence graph efficiently. We also demonstrated that
this dynamic object-oriented program slicing technique is
more effective than traditional object-oriented program
slicing technique.

In section 2 and section 3, we review the studies
concerning traditional dynamic program slicing approaches
and dynamic object-oriented program dependence graph. In
section 4, we account for the Efficient Dynamic
Object-orient Program Dependence Graph (EDOPDG) that
is proposed in this paper. In section 5, we introduce the
processes to compute dynamic object-oriented program
slices. In section 6, we apply the processes for the
application programs. The EDOPDG technique is compared
with traditional methods in section 6.

2. Dynamic Program Slicing

Program slicing is a course to generate program slices
that is a set of statements that give effects to given variables
directly or indirectly. The slicing technique is classified by
the two criteria.

Firstly, it can be divided into static slicing and dynamic
slicing by existence of execution history. Secondly, it can
be divided into program slicing, system slicing and
object-oriented program slicing by the number of programs
that are objects of slicing [2][3][5].

Program slicing may be included the concept of system
slicing. Especially, it may be called as procedure slicing

- 651 -

where an object of the program slicing is single program.
An important distinction of static slice and dynamic slice is
that the former notion is computed without making
assumptions regarding a program’s input, whereas the latter
relies on some specific test case[1].

Dynamic program slicing involves creating a slice of a
program based on a specific input. The slice is therefore
only valid for its associated input. A dynamic program slice

criterion consists of ¥ and /, just like a static backward slice.

1t also contains a sequence of input(s).

3. Dynamic Object-Oriented Program Dependence
Graph

We use dependence graph notation traditionally in order
to - confirm " the generation of correct program slices.
Therefore, many types of dependence graph notation are
introduced according to advanced program slicing
techniques. In this section, we explain dependence graphs
so as to express the program slicing. A dynamic
dependence graph represents nodes with dependence edges
based on the criterion node after the generation execution
history for input value given. A new node for every
occurrence of a statement in the execution history may need
to be created if another node has the same transitive
dependencies[12]. A slicing criterion of program P
executed on specific input is a triple C=(/?, V), where 7 is an
instruction at execution position ¢ on execution history H
and V is a subset of variables in P.

To find a dynamic slices of an object-oriented program,
we construct a dependence-based representation namely,
dynamic object-oriented program dependence graph
(DOPDG) for a particular execution trace of the program.
The DOPDG is a graph (V, 4) where V is the multi-set of
flow-graph vertices, and A is the set of edges represented
dynamic control dependences and data dependences
between vertices.

Control - dependences represent control conditions on
which the execution of a statement on expression depends.
Informally, a statement # is directly control-dependent on
the control predicate v of a conditional branch statement if
u is executed or not is directly determined by the evaluation
result of v.

Data dependences reflect the data flow between
statements and expressions. Informally a statement u is
directly data dependent on a statement v if the value of a
variable computed at v has a direct influence on the value of
a variable computed at «. figure 2 shows the DOPDG of the
program in Figure 1 on input argv[1] = 3. The solid edges
denote data dependencies and the dashed edges denote
control dependencies.

An execution history is a set of the sequence <v, v, ,

vy> by order to be visited during execution of given test
case. We use superscripts to distinguish between multiple
occurrences of the same node in the execution history. The
execution history of the example program shown Figure 1
is { 34,35,37,2,3,4,5,38, 15, 16, 17", 18, 21", 22" 174,
187,217, 22% 17, 11, 12, 39 } where argv[1] = 3.

- 652 -

20:

21:
22:

23:

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

34:

35:

class Elevator {
public:
Elevator(int 1_top floor)

{ current_floor = I;
current_direction = UP;
top_floor = 1_top_floor; }

virtual ~Elevator() {}

void up()

{ current_direction = UP; }
void down()

{ current_direction = DOWN; }
int which_floor()

{ return current_floor; }

Direction direction()

{ return current_direction; }

virtual void go (int floor)
{ if (current_direction == UP)
{ while ((current_floor != floor) &&
(current_floor <=top_floor))
add(current_floor, 1); }
else
{ while ((current_floor != floor) &&
(current_floor > 0))
add(current_floor, -1); }

}

private:
add(int &a, const int& b)
{a=a+b};
protected:
int current_floor;
Direction current_direction;
int top_floor;

I

class AlarmElevator : public Elevator {
public:
AlarmElevator(int top_floor):
Elevator(top_floor)
{ alarm_on=0; }
void set_alarm()
{alarm on=1; }
void reset_alarm()
{alarm on=0; }
void go(int floor)
{if (falarm_on)
Elevator::go(floor)

}s

protected:
int alarm_on;

s

main(int argc, char **argv) {
Elevator *e_ptr;
if (argv[1])

36: e_ptr = new AlarmElevator(10);

else
37: e _ptr = new Elevator(10);
38: e ptr->go(3);
39: cout << ‘“in Currently on floor:”
<<e_ptr->which_floor() << "n";
}

Figure 1 - Sample Program

Figure 2 - DOPDG of Sample Program

4. Efficient Dynamic Object-Oriented
Program Dependence Graph

An Efficient Dynamic Object-oriented Program
Dependence Graph (EDOPDG) proposed in this paper is
similar to the Program Dependence Graph(PDG) in the
respect that the graphs represent the control dependence
information by the control dependence edges and the data
dependence information by the data dependence edges at
the statements vertexes. The traditional object-oriented
program dependence graphs is added the member variable
edges, the call edges for construction of objects, the
polymorphic call edges, the method call edges, etc.
However, EDOPDG only is added the polymorphic call
edges.

The process that is drawn up EDOPDG is as follows.

(1) We draw up edges in the graph using the static
information of a source program within the limits of an
execution history.

(2) After we compute the data dependence edges, we add
them to the graph if the paths of them in the graph are
not already existent.

(3) After we compute the control dependence edges, we add
them to the graph if the paths of them in the graph are
not in existence. Start nodes of control dependence are

as follows.

o selection control nodes that are in the upper level of
nodes that are in existence two times and over in the
area from the criterion node to the exit node of data
dependence.

e repetition control nodes that are in the upper level of
nodes that exist in the area from the criterion node to
the exit node of data dependence.

Control dependence nodes are as follows:
o class control dependence edges

e procedure control dependence edges

¢ method control dependence edges

o select control dependence edges

o repetition control dependence edges

e return control dependence edges

Figure 3 shows the EDOPDG of the program in Figure 1
on input argv{l}] = 3. The solid edges denote data
dependencies and the dashed edges denote control
dependencies.

Figure 3 - EDOPDG of Sample Program

5. Computing Dynamic Slices of Dynamic
Object-Oriented Program

The procedure that computes the dynamic
object-oriented program slices using the efficient dynamic
object-oriented program dependence graph (EDOPDG) is
divided into four steps.

Firstly, a step of the program node analysis

Secondly, a step of the program execution history analysis

Thirdly, a step of the dynamic object-oriented program
dependence graph generation

Finally, a step of the sliced program generation using the

reverse tracking method.

- 653 -

*»39 — 37 — 38 — 15
N &
. AN
2=5-—-17 -3—18 — 21 — 22
=39 — 34

=39 —~ 11 — 12

Figure 4 - Reverse Traveling of EDOPDG where slicing
criteria = (H, 39,,, which_floor)

We apply the dynamic object-oriented program slicing
algorithm to an example program in Figure 1 in order to
make dynamic object-oriented slices where argv{1] = 3 and
slicing criteria = (H, 39,,, which_floor). A sliced program
can be constructed by reverse- traversing the EDOPDG
shown Figure 3 to compute dynamic object-oriented
program slices where slicing criterion is which_floor of
execution history order 39. Figure 4 shows the reverse
traveling steps of nodes in EDOPDG where slicing criteria
= (39%, which_floor). The sliced program is illustrated in
Figure 5.

class Elevator {
public:
Elevator(int 1_top_floor)
{ current_floor = 1;
top_floor=1_top floor; }
int which_floor()
{ return current_floor; }

virtual void go (int floor)
{ while ((current_floor != floor) &&
(current_floor <= top floor))
add(current_floor, 1); }

private:
add(int &a, const int& b)
{a=a+b;};
protected:
int current_floor;
Direction current_direction;
int top_floor;

b

main(int argc, char **argv) {
Elevator *e_ptr;
e_ptr = new Elevator(10);
e_ptr->go(3);
cout << “\n Currently on floor:”
<<e_ptr->which_floor() << "n";
} ,

Figure 5 - Sliced program

6. Efficiency Analysis

The efficiency data of the traditional dynamic

object-oriented program dependence graph(DOPDG) and
the efficient dynamic object-oriented program dependence
graph(EDOPDG) proposed in this paper are represented.

6.1 Comparison of Complexities

The complexities that consist of the number of nodes
and the number of edges are represented below.

Type Complexities
ODPDG 56
EDOPDG 34

6.2 Comparison of the size of slices

The sizes of slices of the traditional DOPDG
techniques and the EDOPDG technique proposed in this
paper are represented below.

Type Size of slices
DOPDG 17
EDOPDG 14

7. Conclusions

Static slices are a set of nodes that affect criterion
variables. Dynamic slices are a set of nodes that affect
actually the values of variables tracing on the test case.
Therefore we can use usefully a dynamic concept in the
field of the debugging through a test case. _

We propose a dynamic object-oriented slicing
technique using EDOPDG in this paper. We find that the
complexity of the EDOPDG is 34 and the traditional
complexity of the DOPDG is 56 with a result that we apply
an example program of the figure 1 to the formulas of the
complexities using the traditional DOPDG technique and
the EDOPDG technique. The size of the slices of the
EDOPDG is 14 where the slicing criterion is which_floor in
the node 39. The sizes of the slices of the DOPDG is 17.
The value of the complexities and the size of slices of the
EDOPDG is smallest comparing with that of the DOPDG.

We find that the approach of the EDOPDG is more
efficient compared with those of the DOPDG..

8. References

[1] Arpad Beszedes, Tamas Gergely, Zsolt Mihaly Szabo,
Janos Csirik, Tibor Gyimothy, "Dynamic Slicing
Method for Maintenance of Large C Programs.”,
Conference on Software ~ Maintenance = and
Reengineering (CSMR), Lisbon, Portugal, pp.105-113,
2001. .

[2] T. Wang and A. Roychoudhury, “Using Compressed

- 654 -

Bytecode Traces for Slicing Java Program”, 26"
International Conference on Software Engineering, pp.
512-521, Edinburgh, Scotland, UK, 2004.

[3] Yong, S. and Horwitz, S. "Using Static Analysis to
Reduce Dynamic Analysis Overhead", Formal Methods
in System Design Journal (FMSD), Nov. 2005.

[4] D. Binkley, S. Danicic, T. Gyimothy, M. Harman, B.
Korel, “Theoretical foundation of dynamic program
slicing”, Theoretical Computer Science Accepted, Jan.
2006.

[5] Hiralal. Agrawal and J. R. Horgan, "Dynamic Program
Slicing.", Proc. ACM SIGPLAN'90 Conf, Programming
Lang. Design and Implementaion, pp.246-256, 1990.

[6] J. Zhao, "Dynamic Slicing of Object-Oriented
Programs," Technical-Report SE-98-119, pp.17-23,
Information Processing Society of Japan (IPSJ), May
1998.

[7] X. Zhang, S. Tallam, and R. Gupta, “Dynamic slicing
long running programs through execution fast
forwarding.”, In FSE, 2006.

[8] Loren D. Larsen and Mary Jean Harrold, "Slicing
Object-Oriented Software.", Technicdal Report 95-103,
Department of Computer Science, Clemson University,
March 1995.

[9] Margaret Ann Francel, Spencer Rugaber, "The value of
slicing while debugging.", Science of Computer
Programming, Volume 40, Number 2-3, pp.151-169,
July 2001.

[10] Mark Weiser, "Program slicing.", IEEE Trans. on
Software Engineering, pp.352-357, July 1984.

[11] Park, S. H. and Park, M. G, "An efficient dynamic
program slicing algorithm and its Application.”, Proc.
of the IASTED International Conference, Pittsburgh,
Pennsylvania, pp.459-465, May 1998.

[12] Raghavan Komondoor, Susan Horwitz, "Tool
Demonstration: Finding Duplicated Code Using
Program Dependences.", European Symposium on
Programming (ESOP), Genova, Italy, pp.383-386,
2001.

- 655 -

