[구SO-07]Statistical Study of Coronal Mass Ejections Observed by Mk4 Coronameter

봉수찬 ${ }^{1}$, 김연한 ${ }^{1}$, 조경석 ${ }^{1}$, 백지혜 ${ }^{1}$, 황보정은 ${ }^{2}$, 문용재 ${ }^{3}$
${ }^{1}$ 한국천문연구원, ${ }^{2}$ 충북대학교, ${ }^{3}$ 경희대학교

Most of Coronal Mass Ejection (CME) studies so far have been done using LASCO C2/C3 onboard SOHO spacecraft. However, the observation range of LASCO C2/C3 is limited above $2 \mathrm{R} \odot$. We report the statistical kinematic properties of CMEs observed by Mk4 coronameter of Mauna Loa Solar Observatory, which covers the range between 1.08 and $2.8 \mathrm{R} \odot$. We analyze the statistical properties of position angle, speed, and acceleration of relatively well observed CMEs between 1999 and 2005, and compare the result with that of LASCO C2/C3.

[7 7 SO-08] COMPARING DIRECTIONAL PARAMETERS OF VERY FAST HALO CMEs

Rho, Su-lyun and Chang, Heon-Young
Dept. of Astronomy and Atmospheric Sciences, Kyungpook National University

We examine geoeffective directional parameters of coronal mass ejections(CMEs). We select 30 front-side halo CMEs from SOHO LASCO CMEs whose speed is larger than $1000 \mathrm{~km} / \mathrm{s}$ and longitude is less than $30 \square$. These are thought to be the most plausible candidate of geoeffective CMEs. We examine the relation between CMEs directional parameters(Earthward direction, eccentricity, Δ distance and central angle parameter) and the minimum value of the Dst index. We have found that the Earthward direction parameter has a good correlation with the Dst index, the eccentricity parameter has a much better correlation with the Dst index. The Δ distance and central angle parameter has a poor correlation with the Dst index. It's, however, well correlated with the Dst index in very strong geomagnetic storms. Most of CMEs causing very strong storms (Dst $\leq-200 \mathrm{nT}$) are found to have large Earthward direction parameter ($\mathrm{D} \geq$ $0.6)$, small eccentricity, Δ distance and central angle parameters $(\mathrm{E} \leq 0.4, \Delta \mathrm{X}$ and $\sin \theta$ ≤ 0.2). These directional parameters are very important parameters that control the geoeffectiveness of very fast front-side halo CMEs.

