유기물층 두께변화에 따른 유기발광 소자의 전기적 및 광학적 특성

Organic-layer thickness dependent electrical and electrical and optical properties of organic light-eitting diodes

  • 발행 : 2008.04.25

초록

We have studied an organic layer-thickness dependent electrical and optical properties of organic light-emitting diodes in a device structure of ITO/TPD/$Alq_3$/LiF/Al. While a hole-transport layer thickness of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. Current-voltage-luminance characteristics of the devices show that there are typical rectifying behaviors, and the luminance reaches about $30,000cd/m^2$. Thickness-dependent current efficiency shows that there is a gradual increase of the efficiency as the total layer thickness increases. The efficiency becomes saturated to be about 10cd/A when the total thickness is above 140nm. They show that emission was from the $Alq_3$ layer, because the peak wavelength is about 525nm. View angle-dependent emission spectra show that the emission intensity decreases as the angle increases.

키워드