TF-P26

Non-volatile Memory Behaviors of Al₂O₃/Cu/Al₂O₃ Multi-layers prepared by ALD

Byung Kook Lee^{1,2}, Jun Young Lee², Won Mook Chae¹, Sun Sook Lee¹, Jin Ha Hwang², Taek-Mo Chung¹, Chang Gyoun Kim¹, Ki-Seok An¹

¹Device Materials Research Center, Korea Research Institute of Chemical Technology ²Department of Material Science and Engineering, Hongik University, Seoul, Korea

In this study, Al₂O₃/Cu/Al₂O₃ multi-layers were fabricated using atomic layer deposition (ALD) technique on p-type Si(001) in order to investigate the floating gate memory characteristics. Al₂O₃ thin films, as control layer and tunneling layer, were grown using TMA {Al(CH₃)₃} and H₂O and Cu layers, as a charge-stored layer, were prepared using Cu aminoalkoxide precursor with hydrogen plasma. The films were characterized by XPS, AFM, and SEM, etc depending on the surface preparations and deposition conditions. Non-volatile memory behaviors of Al₂O₃/Cu/Al₂O₃ multi-layers were recognized by high frequency capacitance-voltage (C-V) measurements.