TF-P56

Effect of oxygen partial pressures on structural and electrical properties of dc magnetron sputtered CuAlO₂ films

Sun Gyu Choi, A. Sivasankar Reddy and Hyung-Ho Park

Department of Ceramic Engineering, Yonsei University

Wide band gap p-type transparent conducting oxide (TCO) has been recently focused on the research in order to open up a new range of applications for optoelectronic device technology. Upto now, very limited p-type transparent conducting oxides have been produced successfully. In the present work, p-type transparent conducting copper aluminum oxide (CuAlO₂) films has been prepared on glass substrates by dc reactive magnetron sputtering technique under various oxygen partial pressures in the range of $1x10^{-4} - 3x10^{-3}$ mbar and at a constant substrate temperature of 523 K. The influence of oxygen partial pressure on their physical properties was systematically characterized by X-ray diffractometer, atomic force microscopy and four point probe method. The dependence of cathode potential on the oxygen partial pressure was explained interms of oxidation of the sputtering target.

The X-ray diffraction results revealed that the structural properties of the films were highly influenced by the oxygen partial pressure. The films exhibited secondary phases of Cu₂O and Al₂O₃ along with CuAlO₂ phase at lower and higher oxygen partial pressures of $2x10^{-4}$ and $1x10^{-3}$ mbar, respectively. The single phase CuAlO₂ was observed at an oxygen partial pressure of $6x10^{-4}$ mbar. The electrical resistivity of the films was decreased with the increase of oxygen partial pressure. The electrical resistivity of 3.1 Ω cm and Hall mobility of 13.1 cm²/V-sec were obtained at an oxygen partial pressure of $6x10^{-4}$ mbar.