벌지테스트를 이용한 마이크로 스케일의 유동응력 해석

The analysis for flow stress using bulge test

*이헌기 ¹, 정봉부 ¹, [#]박현철 ¹
*H. K. Lee¹(qq9481@postech.ac.kr), B. B. Jung¹ (bbjung.postech.ac.kr), [#] H. C. Park¹(hcpark.postech.ac.kr) ¹ 포항공과대학교 기계공학과

Key words: Size effect, Flow stress, Bulge test

1. 서론

MEMS/NEMS 기술이 발달하면서, 구조물의 안정성 평가를 위해 기계적 물성측정이 중요시되고 있다. 특히 탄성계수 및 유동응력(flow stress)은 그 재료의 거동에 대한 해석에 필수적이다. 최근 탄소성 거동을 하는 MICRO/NANO 크기의 금속 구조물에 대한 실험들에서 기존의 고전 소성이론으로는 최근의 나타나는 크기효과(size effect)가 보도 되어 지고 있다. 예를 들어 나노 압입(nanoindentation) 실험의 경우, 압입 깊이가 감소함에 따라 경도가 2~3 배 상승한다. 비틀림(torsion) 실험의 경우 그 지름이 감소할수록 전단응력이 증가하는 현상을 보이며, 굽힘(bending) 실험의 경우 그 두께에 감소함에 따라 강도가 증가한다. 이런 크기효과는 파괴(fracture) 실험에서도 나타난다.

기존 고전 소성이론은 구성모델 자체에 내부길이 척도(internal length scale)를 가지고 있지 않기 때문에 구조물에서 크기의 나타나는 MICRO/NANO 예측할 수 없다. 현재까지 이런 크기의존성을 크기효과를 해석하기 위해서 여러가지 이론들이 제안되었으며, 이 중 변형률 구배 소성이론(strain gradient plasticity)은 고전적인 소성학을 이용하여 원자 수준의 재료 현상을 묘사할수 있는 대표적 이론이다. 본 연구에서는 이 변형률 구배 소성이론을 바탕으로 하여 벌지(bulge) 실험에서 나타나는 크기효과를 해석하였으며, 각 부재의 유동응력을 해석하였다.

2. 평면 벌지 실험 이론- 요약

박막의 기계적인 물성치를 측정하는 벌지 실험에서 가장 중요한 요소 중 하나는 벌지 형상에 대한 해석이다. 평면 벌지 박막 모델은 여러 형상들 중에 가장 기본적이고 간단한 모델로 Fig. 1 에 나타내었다. 박막의 응력은 압력용기에서의 힘 평형을 적용하여 유도된 일반식을 사용하며 다음과 같다.

$$\sigma_{11} = \frac{PR}{t} \tag{1}$$

여기서 P는 박막에 가하는 압력, σ는 박막의 응력, t 는 박막의 두께, R 은 벌지 형상의 곡률 반경, a 는 박막의 반경을 나타낸다.한편 변형률(strain)은 처음 호의 길이(original arc length)에 대한 변형된 호의 길이(deformed arc length)의 비로 정의할 수 있다. 이를 식으로 표현하면 다음과 같다.

$$\varepsilon_{11} = \frac{R\theta - a}{a} = \frac{R\arcsin(\frac{a}{R}) - a}{a} \approx \frac{2h^2}{3a^2}$$
 (2)

그러나 외적 지지구조를 가지지 않는 박막을 증착시키는 과정에서 잔류응력(residual stress)이 발생할 수 있다. 이를 고려하여 잔류응력에 의한 초기의 부풀림(taut)이나 쭈그러짐(wrinkle)에 대한 추가항이 필요하다. 따라서 변형률은 부풀림에의한 변형과 잔류응력에 의한 변형의 합으로 다음과 같이 표현되어진다.

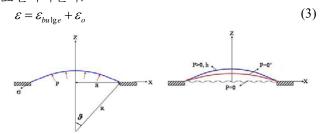


Fig. 1. Schematic of a plane membrane bulge test

3. 변형률 구배 이론-요약

Tailor 는 임계분해 전단강도(critical resolved shear strength)을 재료의 변형시 발생되는 전위밀도(dislocation density)와 연결하여 다음과 같은 전위모델을 제안하였다.

$$\tau_{crss} = \alpha \mu b \sqrt{\rho_T} = \alpha \mu b \sqrt{\rho_S + \rho_G} \tag{4}$$

여기서 au_{crss} 는 임계분해전단강도, $ho_{\!\scriptscriptstyle T}$ 는 전체 전위밀도, ρ_s 는 통계적으로 축적된 전위밀도(density of SSD, statistically stored dislocation), 기하학적으로 필요한 전위밀도(density of GND, geometrically necessary dislocation), 전단계수(shear modulus), b 는 버거스 벡터(Burgers 는 $0.2 \sim 0.5$ 사이의 값을 α 실험상수(empirical constant)이다. 또한 Tailor 는 $_m$ 이라는 계수를 이용하여 인장항복 강도 $\sigma_{_{\mathrm{V}}}$ 를 결정체 재료에 대하여 다음과 같이 나타내었다.

$$\sigma_{v} = \overline{m\tau}$$
 (5)

m 은 연속체 레벨에서 결정체 이방성의 등방성 해석자로 나타내어진다. Bishop 과 Hill 은 면심입방격자(FCC, face centered cubic lattice)에 대해서 m 은 3.08 이라는 값을 이끌어내었다.

재료가 지수함수로써 근사하는 가공경화를 경우라고 가정하여 Nix 와 Gao 는 유동응력 σ 를 식 (6)과 같이 나타내었다.

$$\sigma = \sigma_{ref} \sqrt{\varepsilon^{2N} + l\eta} \tag{6}$$

여기에서 σ_{ref} 는 단축 인장에서의 기준 응력(reference stress), \mathcal{E} 는 유효응력(effective stress), N 은 가공경화지수(work hardening exponent), l 은 물질 특성길이(material characteristic length), η는 유효 변형률 구배(effective strain gradient)이다

4. 벌지 실험에서의 적용

벌지 실험에서 나타나는 크기효과를 해석하기 위하여 다음과 Fig. 2 와 같은 모델을 제시하였다.

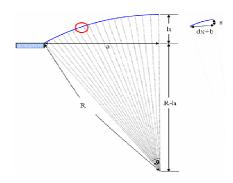


Fig. 2. Simplified plane membrane bulge model

Fig. 2 에서와 같이 변형과 관련된 n 개의 전위가 발생했다고 가정하면, ε 과 n 과의 관계식을 (7)과 같이 이끌어낼 수 있다.

$$n = \frac{a}{b}\varepsilon_{11} \tag{7}$$

식 (7)과 변형된 형상을 이용하면 크기 효과와 관련된 $l\eta$ 를 구할 수 있다

$$l\eta = 9\alpha^2 b \left(\frac{\varepsilon_y^N \mu}{\sigma_y}\right) \frac{\varepsilon_{11}}{t}$$
 (8)

식 (6)~(8)을 이용하여 Xiang 와 Vlassak 의 벌지 실험에 대한 해석을 행하였으며, 그 결과를 Fig. 3 에 나타내었다.

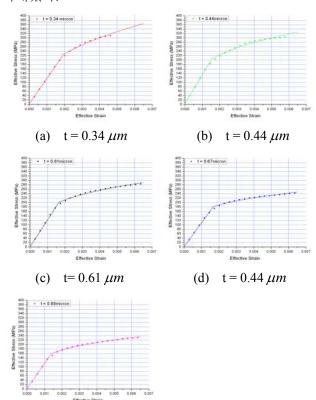


Fig. 3. Comparison of flow stress using proposed model

(c) $t=0.89 \ \mu m$

Fig. 3 에서 볼 수 있듯이 제안한 모델은 두께에 따른 유동응력을 잘 예측함을 알 수 있다. 곡선 접합(curve fitting)을 통하여 얻어진 물성에 대한 결과를 Table 1 에 요약하였다.

Table 1 Parameters derived curve fitting of the experiments

t (μm)	N	α	<i>l</i> (μm)	σ_y (MPa)	ε _y (%)	E (GPa)
0.34	0.396	0.289	0.102	218.046	0.188	114
0.44	0.307	0.370	0.671	199.740	0.152	128
0.61	0.264	0.204	0.332	199.570	0.164	121
0.67	0.225	0.214	0.597	179.211	0.165	108
0.89	0.248	0.269	0.925	157.442	0.137	114

5. 결론

벌지 실험 및 변형률 구배 이론을 이용하여 벌지 실험에 대한 해석 모델을 제시하였으며, 곡선 적합을 통해 탄성계수(elastic modulus), 항복응력 및 항복 변형률 등의 기계적 물성치를 이끌어내었다. 또한 제시한 모델은 유동응력을 예측함에 있어 매우 정확함을 보인다.

참고문헌

- Vlassak, J.J., and Nix, W.D, "A New Bulge Test Technique for the Determination of Young's Modulus and Poisson's Ratio of Thin Films," *Journal of Materials Research*, Vol. 7, No. 12, pp. 3242 ~ 3249, 1992
- Martha, K.S., Vlassak, J.J, Powell, S.F., Daniels, B.J., and Nix, W.D., "Accuracy and Reliability of Bulge Test Experiments,", *Materials Research Society Symposium Proceedings*, Vol. 308, pp. 159 ~ 164, 1993
- Paviot, V.M., Vlassak, J.J., and Nix, W.D., "Measuring the Mechanical Properties of Thin Metal Films by means of Bulge Testing of Micromachined Windows," *Materials Research* Society Symposium Pro- ceedings, Vol. 356, pp. 579 584, 1995
- 4. Nix, W. D., Mechanical properties of thin films, Metall. Trans 1989,;20A:2217.
- 5. Fleck, N. A., Muller, G. M., Ashby, M. F., Hutchinson, J. W., Strain gradient plasticity: theory and experiment, Acta Metallurigica et Materialia 1994;42:475.
- 6. Stolken, J. S., Evans, A. G., Micro bend test for measuring the plasticity length scale, Acta Materialia 1998;46:509.
- Gao, H., Huang, Y., Nix, W. D., Hutchinson, J. W., Mechanismbased strain gradient plasticity - I. Theory, J. Mech. Phys. Solids 1999;47:1239.
- Gao, H., Huang, Y., Nix, W. D., Hutchinson, J. W., Mechanismbased strain gradient plasticity - II. Analysis, J. Mech. Phys. Solids 2000;48:99.
- Nix, W. D., Gao, H., Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids 1998;46:411.