PF열교환기에서 R410A 냉매분배의 영향

김 정 식[†], 김 내 현^{*}

송도테크노파크 기술혁신본부, *인천대학교 기계공학과

Analysis of R410A refrigerant distribution in parallel flow heat exchanger

Jeong Sik Kim[†], Nae Hyun Kim^{*}

Division of Technical Innovation, Songdo Technopark, Incheon 406-132, Korea *Department of Mechanical Engineering, University of Incheon, Incheon 402-749, Korea

ABSTRACT: A computer program, which simulates the parall flow evaporatorwas developed. The program was having used to simulate the sample 650 mm × 190 mm frontal area, 25 mm flow depth and 3.0 mm fin pitch. It was shown that the cooling capacity of 3 kW could be available from the sample. The present model, however, does not consider refrigerant mal-distribution in each pass, which is known to reduce the cooling capacity of the parallel flow heat exchanger.

Key words: Refrigerant distribution(냉매분배), Parallel Flow(평행류), Heat transfer rate(열전달율)

1. 서 론

최근 알루미늄 평행류 열교환기 (PF 열교환기)를 가정용 에어컨에 적용하려는 연구가 활발히 진행되고 있다. PF 열교환기를 적용하면 기존 휜-관 열교환기 대비 체적을 현저히 줄일 수 있다. PF 열교환기는 평판관의 수력직경이 1~2 mm이고 유동 단면적은 10~20 mm²으로 휜-관 열교환기에 사용되는 원관에 비하여 매우 작다. 이 경우 단일유로로 구성하게 되면 압력손실이 너무커지게 되므로 헤더를 사용하여 다수의 관에 나누어 분배한다. 이 경우 냉매측 pass의 구성에따라 전열성능이 영향을 받게 된다.

본 연구에서는 PF 열교환기를 증발기로 적용하였을 경우 냉매 pass의 영향을 검토하였다. 고려된 PF 열교환기는 전방면적이 높이 190 mm, 폭 650 mm로 평판관 핏치를 10 mm 로 하면 65개의 평판관이 사용된다(Fig. 1 참조). 이를 2 pass 로 구성하면 pass당 30여개의 평판관이 장착되고 3 pass로 구성하면 20여개의 평판관이 장착되고 3 pass로 구성하면 20여개의 평판관이 장착된다. 또한 pass당 평판관의 수를 변경시킬수도 있다. 본 연구에서는 냉매측 pass 수, pass당 평판관의 변화 등이 PF 열교환기의 전열 성능에

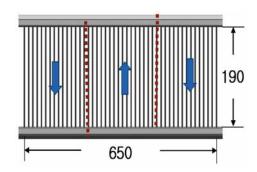


Fig. 1 External size of PF heat exchanger 미치는 영향을 해석적으로 고찰하였다.

2. 열교환기 해석

2.1 해석 방법

PF 열교환기에서 냉매측은 2상, 드라이아웃, 기상으로 연속적으로 변화한다. 이를 적절히 모사하기 위해서는 열교환기를 미소요소로 나누고 각 요소에서 유동, 열전달, 물질전달을 해석할 필요가 있다. 증발기의 경우 흰표면은 결로수로 젖게 되므로 전체 열저항은 다음 식으로 표현된다.

$$\frac{1}{UA} = \frac{b_r}{h_r A_i} + \frac{b_p t}{k_p A_{pm}} + \frac{b_{w,m}}{\eta h_{o,w} A_o} \tag{1}$$

여기서 b_r 은 공기선도의 냉매온도에서 포화엔 탈피의 기울기, b_p 는 관벽평균온도에서 포화엔탈 피의 기울기, $b_{w,m}$ 은 액막온도에서 포화엔탈피의 기울기이고 $h_{o,w}$ 는 습표면의 열전달계수이다. PF 열교환기의 공기 및 냉매측 흐름은 비혼합-비혼 합 직교류이고 이 경우 $\epsilon-NTU$ 관계식은 다음 과 같다.

$$\epsilon = 1 - \exp\left(\frac{NTU^{0.22}}{C_r}\left(\exp(-C_rNTU^{0.78}\right) - 1)\right)(2)$$

$$C_{r} = \frac{C_{\min}}{C_{\max}} = \left(\frac{\min(m_{a}, (m_{r}c_{p,r}/b_{r21}))}{\max(m_{a}, m_{r}c_{p,r}/b_{r21}))}\right) (3)$$

$$Q = \epsilon C_{\min}(i_{a,1} - i_{r,1})$$
(4)

PF 열교환기의 습표면 열전달계수와 압력손실에 대해서는 Park and Jacobi⁽¹⁾, Kim and Bullard⁽²⁾등이 실험을 통해 설계 상관식을 제시하였는데, 건표면에 비하여 열전달계수는 낮고 압력손실은 증가한다고 보고하였다. 본 연구에서 이용한 Kim and Bullard 상관식은 다음과 같다.

$$j = Re_{Lp}^{-0.517} \left(\frac{L_{\alpha}}{90}\right)^{0.25} \left(\frac{F_{p}}{L_{p}}\right)^{-0.171} \left(\frac{H}{L_{p}}\right)^{-0.29}$$

$$\left(\frac{F_{d}}{L_{p}}\right)^{-0.248} \left(\frac{L_{l}}{L_{p}}\right)_{0.09} \left(\frac{T_{p}}{L_{p}}\right)^{-0.275} \left(\frac{\delta_{f}}{L_{p}}\right)^{-0.05}$$
(5)

$$j = \frac{h_{o,s}}{\rho_m V_c c_{n,o}} \Pr_o^{2/3}$$
 (6)

$$f = \frac{A_c}{A_{ow}} \frac{\rho_m}{\rho_l} \frac{\rho_1}{\rho_2}$$

$$\left(\frac{2\rho_l \Delta P_o}{(\rho_m V_c)^2} - (K_c + 1 - \sigma^2) \right)$$

$$-2\left(\frac{\rho_1}{\rho_2} - 1 \right) + (1 - \sigma^2 - K_e)$$
(7)

$$f = Re_{Lp}^{-0.798} \left(\frac{L_{\alpha}}{90}\right)^{0.395} \left(\frac{F_{p}}{L_{p}}\right)^{-2.635} \left(\frac{H}{L_{p}}\right)^{-1.22}$$

$$\left(\frac{F_{d}}{L_{p}}\right)^{0.823} \left(\frac{L_{l}}{L_{p}}\right)^{1.97}$$
(8)

평판관내로는 냉매가 팽창장치를 지나 건도 0.1~0.2로 유입되고 냉매는 증발하여 과열 증기 상태로 유출된다. 또한 2상 열전달계수는 건도 0.7~0.8에서 dry-out이 발생하면 감소하는 경향 (liquid deficient region)을 보이므로 냉매측 열전 달은 2상영역과 단상영역 그리고 liquid deficient

region에 대해 고려하여야 한다. R-22 증발 열전 달계수는 Kim et al. [3]이 실험하였는데 기존 대구경 상관식들이 저건도 저열유속의 데이터는 낮게 예측하고 고건도 고열유속 데이터는 높게 예측하는 것으로 보고하였다. 본 연구에서는 Shah 상관식[4]을 사용하였다.

2.2 계산 절차

- (1) 초기에 핀 표면의 응축액막 온도 $(T_{p,m})$ 와 튜 브벽면온도 $(T_{w,m})$ 를 가정한다.
- (2) b_p , b_r , $b_{w,m}$ 를 계산하고, 공기측과 냉매측 열 전달계수를 구한 후 미소체적의 UA를 구한다.
- (3) 식 (2)에서 ϵ 을, 식 (4)에서 Q를 구한다.
- (4) 열량(Q)를 구한 후 다음의 관계를 이용하여 가정치와 $T_{p,m},\ T_{w,m}$ 의 값을 비교한다.

$$T_{p,m} = T(i_s)_{is=is,p,m} \tag{9}$$

$$i_{s,p,m} = \frac{i_{r,1} + i_{r,2}}{2} + \left(\frac{b_r}{h_r A_i} + \frac{b_p t_f}{k_p A_{pm}}\right) Q(10)$$

$$T_{w,m} = T(i_s)_{is=is,w,m} \tag{11}$$

$$i_{s,w,m} = \frac{i_{a,1} + i_{a,2}}{2} - \eta_f \left(\frac{c_{p,a}}{\eta h_{o,s} A_o}\right) Q \qquad (12)$$

$$i_{a,2} = i_{a,1} - \frac{Q}{m_a} \tag{13}$$

- (5) $T_{p,m}$, $T_{w,m}$ 이 수렴할 때까지 반복 계산한다.
- (6) 열량(Q)값이 수렴되면 다음 식을 이용하여 출구 습도비와 온도를 계산한다.

$$W_{2} = \left(\left(\left(\frac{b_{w,m}}{\eta h_{o,w} A_{o}} \right) m_{a} - 0.5 \right) W_{1} + W_{s} \right)$$

$$\left(\left(\frac{b_{w,m}}{\eta h_{o,w} A_{o}} \right) m_{a} + 0.5 \right)$$
(14)

여기서, $W_s = f(T_{p,m})$

$$T_{a,2} = \frac{i_{a,2}/1000 - 2501 W_2}{1.006 + 1.805 W_2} \tag{15}$$

(7) 상기 계산을 냉매 흐름방향에 따라 출구까지 계속한다.

2.3 계산 조건

냉매는 R410A, 유량이 패스에 일정하게 분배된다고 가정하고, 물성치는 NIST REFPROP 7.1 Subroutine을 이용하였으며 열교환기 제원 및 운전조건은 Table 1, 2 에 나타나있다.

Table 1 Specification of the H-X geometry

Geometry	Value
Fin height H (mm)	10
Louver length L_l (mm)	8
Louver pitch L_p (mm)	1.5
Fin thickness δ_f (mm)	0.1
Louver angle L_{α} (°)	30
Tube width T_w (mm)	2.5
Tube pitch T_p (mm)	12.5
Tube thickness t_f (mm)	0.45

Table 2 Operating and initial condition

Geometry	Value
Face air velocity (m/s)	1.15
Air inlet temperature ($^{\circ}$ C)	27
Air inlet relative humidity ratio (%)	65
Tube wall temperature $T_{p,m}$ (${\mathbb C}$)	14
Water film temperature of fin surface $T_{w,m}$ (°C)	16
Refrigerant inlet temperature $(^{\circ}\mathbb{C})$	10
Refrigerant flow rate (kg/s)	0.0157
Refrigerant inlet quality	0.1

Table 3 Variation of parameters

Flow Depth $F_d(\mathrm{mm})$	Pass	Distribution ratio
25	2 3	1:1 1:1:1 1:2:2

3. 결과 및고찰

냉매는 2pass와 3pass 로 흐르는 경우를 가정하여 계산하였다. Tube pitch가 12.5mm이므로열교환기 가로길이 (650mm)로 52개의 튜브가 설치된다. 따라서 2pass일 때, pass 당 튜브분배비가 1:1이면 pass 당 26개의 튜브가 배당되고, 3pass일 때, 튜브분배비가 1:1:1이면 pass당 17개의 튜브가 배당된다. 1:2:2 인 경우는 첫 번째 패스에 11개 2, 3번째 패스에는 20개의 튜브가 설

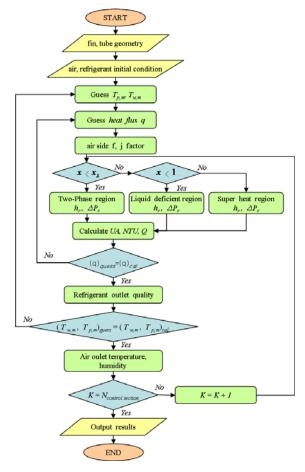
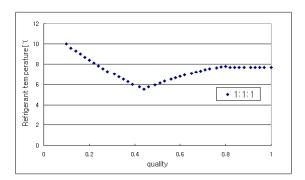



Fig. 2 Flow chart of analysis code 치된다.

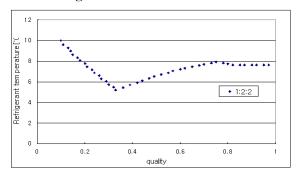

3.1 냉매분배비의 영향

Fig. 3 부터 Fig. 6 에 3 pass에서 분배비 1:1:1 과 1:2:2를 비교하였다. 이 때 $F_p = 3.0$ mm 이다. Fig. 3은 분배비 1:1:1에서는 건도 0.42에서, 1:2:2에서는 0.3에서 두 번째 패스가 시작됨을 보인다. Fig. 4는 전열량을 나타내는데 1:2:2인 경우두 번째 패스부터 전열면적이 두배로 증가하므로 전열량이 급격히 증가함을 보인다. Fig. 5에는 1:1:1인 경우 1:2:2에 비하여 첫 번째 패스의 전열면적이 크므로 건도가 급히 증가함을 보인다. 하지만 건도가 1.0이 되는 위치는 두 경우 유사하게 나타난다. 이로부터 두 경우 전체 전열량이유사함을 알 수 있다. Fig. 6에는 냉매측 압력손실이 나타나 있다. 두 경우 전체 압력손실은 유사하게 나타남을 알 수 있다.

3.2 패스 수의 영향

(a) Refrigerant distribution ratio of 1:1:1

(b) Refrigerant distribution ratio of 1:2:2 Fig. 3 Refrigerant temperature variation at F_p =3.0mm, 3 Pass

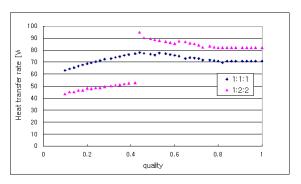


Fig. 4 Comparison of heat transfer rate of 1:1:1 and 1:2:2 at F_p =3.0mm, 3 Pass

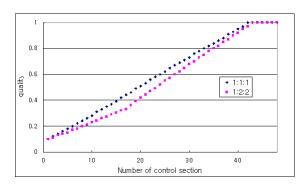
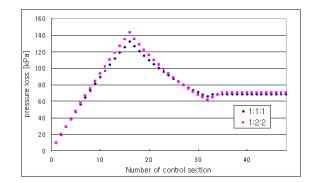
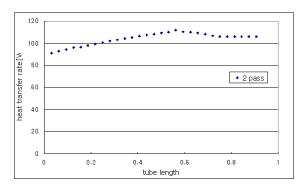
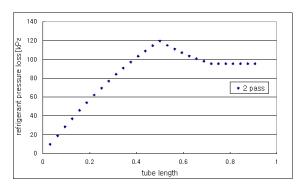
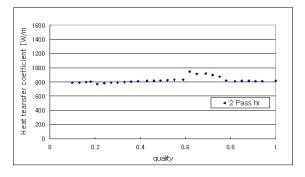
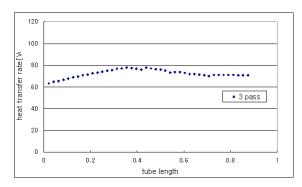
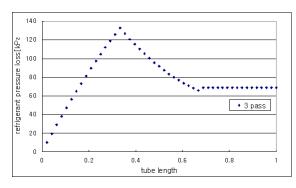


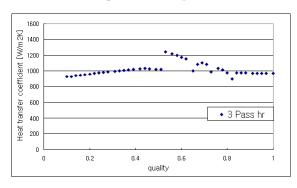
Fig. 5 Refrigerant quality of 1:1:1 and 1:2:2 at F_p =3.0mm, 3 Pass


Fig. 6 Refrigerant-side pressure loss of 1:1:1 and 1:2:2


(a) Heat transfer rate


(b) Refrigerant-side pressure loss


(c) Refrigerant-side heat transfer coefficient Fig. 7 Comparison of heat transfer rate, refrigerant pressure loss and heat transfer coefficient at F_p =3.0mm, 2 pass

(a) Heat transfer rate

(b) Refrigerant-side pressure loss

(c) Heat transfer coefficient

Fig. 8 Comparison of heat transfer rate, pressure loss, heat transfer coefficient at F_p = 3.0mm, 3 pass

Fig. 7과 8는 F_d = 25mm, F_p =3.0mm로 고정하고 냉매 pass를 2pass와 3pass로 변화시킨 경우의 전열량, 냉매압력손실, 냉매측 열전달계수를 나타낸다. 이 때 냉매분배비는 pass마다 동일하게 1:1과 1:1:1로 하였다. Fig. 7 (a)는 2 pass에서전체 유동 길이를 1로 했을 때, 길이방향의 전열량을 나타내는데, 첫 번째 pass가 끝나는 유동길이 50% 부근에서 119W로 최고치를 나타내었고 평균값은 104W였다. (b)는 냉매 압력손실인데길이의 50%부근에서 120kPa로 최대로 나타났고

출구에서는 95 kPa 이다. (c)에 나타난 바와 같이 냉매측 열전달계수의 평균값은 $822~W/m^2K$ 이다.

Fig. 8에는 3 pass 값이 나타나 있다. (a)는 3 pass에서의 평균 전열량은 68W로 2 pass 대비 65%에 해당한다. 이는 3 pass의 전열 면적이 2 pass의 2/3이기 때문에 3 pass에서 작게 나타났 다. 전체 전열량은 2 pass 의 검사체적이 32개이 고 3 pass의 검사체적이 48개이므로 2 pass 는 3328 W, 3 pass는 3264 W로 3 pass에서 다소 작게 나타난다. (b) 냉매측 압력손실은 1 pass 통 과 후 132kPa로 최고로 나타났고 출구에서는 68kPa 이다. 이 결과는 3 pass의 압력손실이 2 pass 보다 작음을 보여주는데 2 pass의 경우 출 구 위치가 열교환기 상부에 위치하여 중력 회복 의 영향 때문으로 판단된다. 3 pass 의 경우는 열교환기 하부에 출구가 위치한다. (c)는 냉매측 열전달계수로 평균값은 988 W/m²K 로 2pass 보 다 20%정도 높게 계산되었다. 이는 3 pass에서 유속이 2 pass 보다 빠르기 때문이다.

4. 결 론

본 연구에서는 미소체적기반으로 국소 변수를 구할 수 있는 PF 증발기 설계프로그램을 개발하였으며 냉매분배의 영향에 대하여 다음과 같은 결론을 얻었다.

- (1) 본 프로그램을 사용하여 설계한 PF증발기는 폭 650 mm, 높이 190 mm, 유동깊이 25 mm, 유로 3 pass일 때, 3000W정도의 냉방능 력을 나타내었다.
- (2) 현재의 프로그램은 냉매측 유량이 균일하게 분배되는 것으로 가정하였으므로 냉매분배의 불균형이 일어나는 실제경우보다 과대예측하 는 것으로 판단되며 이에 대한 보완이 필요 하다.

후 기

본 연구는 2007년 LG전자가 지원한 '저정압 매립덕트 실내기용 PF열교환기개발' 연구과제로 수행되었습니다. 관계자 여러분께 깊은 감사드립니다.

참고문헌

- 1. Park, Y. G. and Jacobi, A. M., 2006, Air-side performance of flat-tube louver-fin heat exchangers under wet conditions: wet-surface multipliers for Colburn j and f factors, International Refrigeration and Air Conditioning Conference at Purdue, R032.
- 2. Kim, M. H. and Bullard, C. W., 2002, Air-side performance of brazed aluminum heat exchangers under dehumidifying

- conditions, Int. J. Refrigeration, Vol. 25, No. 7, pp. 924–934.
- 3. Kim, N. H., Sim, Y. S. and Min, C. K., 2004, Convective boiling of R-22 in a flat extruded aluminum multiport tube, Second International Conference on Microchannels and Minuchannels, ICMM2004-2375.
- 4. Zhang, M. and Webb, R. L., 2001, A correlation of two-phase friction for refrigerants in small-diameter tubes, Exp. Thermal Fluid Sci., Vol. 25, pp. 131-139.