SW-P15

Structural and electrical characterization of CeO₂/HfO₂ as a gate dielectric deposited by r.f magnetron sputter

in-gu kang¹ and Yongha Roh*¹

¹School of Information and Communication Engineering, Sungkunkwan University

The aggressive downscaling thickness of SiO₂, which was used as conventional gate dielectric of metal oxide semiconductor (MOS) device, caused excessive leakage current as the device scale decreased. Because physically limited thickness of gate dielectric. Thin gate dielectric film caused high direct tunneling currents, the use of SiO₂ thinner than 2.0 nm maybe boundary of future MOS devices. High dielectric constant gate oxides such as Ta₂O₅, TiO₂, HfO₂, ZrO₂ and CeO₂ with higher dielectric constant than SiO₂ have been studied to overcome the scaling limit of SiO₂.

HfO₂ and CeO₂ were the most candidate material for gate dielectric. HfO₂ has high dielectric constant(~25) and stable for thermal effect also CeO₂ has high dielectric constant (~26) and good epitaxy on Si. CeO₂ and HfO₂ deposited by r.f magnetron sputter with Ar gas. The film thickness was 5 nm which was measured by ellipsometry. After deposited, CeO₂/HfO₂ film was annealed by rapid thermal process during 5 minute with N₂ gas at 650 °C to 850°C. To evaluate the electrical properties of CeO₂/HfO₂ film, palladium electrode was deposited by evaporator. CeO₂/HfO₂ film was investigated by X-ray diffraction. High frequency capacitance was performed by using a boonton 7200 at 1 Mhz. The EOT and dielectric constant were calculated by capacitance. Current-voltage (I-V) curves were measured by HP 4140B. CeO₂/HfO₂ film shows that leakage current was suppressed and has high dielectric constant. In accordance with increasing temperature, flat band voltage was fixed and hysteresis width was decreased

In this result indicate that CeO_2/HfO_2 were proposed to be a possible ate dielectric material in MOS of next generation.