SW-P51

Hysteresis in cyclically bended organic thin film transistors by using Al₂O₃ nano-laminated gate dielectrics

<u>설영국¹</u>, 노화영¹, 권봉수¹, 이창수², 김형준², 이내응¹

¹성균관대학교 신소재 공학과, ²포항공과대학교 신소재 공학과

In this work, reduction of hysteresis in the pentacene organic thin film transistors (OTFT) employing the nano-laminated multi-layer gate dielectrics with spin-coated organic (PVP) and atomic-layer deposited (ALD) inorganic (Al₂O₃) layers were investigated. For analysis of capacitance, leakage current, and hysteresis of pure PVP and nano-laminated PVP/Al₂O₃/PVP gate dielectric layer, metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) structures fabricated on flexible polyimide substrate were cyclically bended up to 100,000 times with 5 mm bending radius. For evaluation of hysteresis characteristics of fabricated devices, we also applied cyclic bending test. In case of the fabricated dielectric employing the nano-laminated gate dielectric with a thin ALD Al₂O₃ layer (10~50nm), the leakage current and capacitance value in MIM structure was not changed even after 10⁵ times of cyclic bending. However, hysteresis of transfer characteristics in the device with various dielectric structures showed different behavior with increasing cyclic bending. Hysteresis in the transfer characteristics of the device with increasing the thickness of ALD Al₂O₃ layer in the nano-laminated multilayer gate dielectric was decreased compared to that of the device with pure PVP layer. Electrical and mechanical properties of the nano-laminated gate dielectrics with them will be discussed in detail.