Electric Characteristics of HfO₂ deposited by Atomic Layer Deposition

<u>김수현</u>¹, 박재경¹, 노용한¹

¹성균관대학교 정보통신공학부

According to the transistor scaling, thickness of gate oxide layer in metal-oxide-semiconductor field effect transistor (MOSFET) devices is scaled down. Established materials for the gate oxide are coming up to its physical limits in terms of leakage current and reliability across a Si. Generally, SiO₂ film has been used for the gate dielectric in MOSFET. However, SiO₂ is no longer applicable because of the excess leakage current due to direct tunneling and reliability problems. For the reason, high dielectric constant k (high-k) materials have gained considerable attention as a possible alternative.

In this work, we investigated the physical and electrical properties of HfO_2 films. HfO_2 film was deposited on the Si substrate by atomic layer deposition (ALD). Gate dielectric was annealed by rapid thermal process (RTP) in N₂ ambient for 5 min. Annealing temperature is as-deposited, 500, 600 °C.

According to increase annealing temperature, capacitance values of HfO_2 are increased and flat band voltage characteristics are improved. Measured information by x-ray diffraction confirmed increasing crystallization. The dielectric constants of HfO_2 were calculated to be 14.3, 22.2, 26.27 at as-deposited, 500, 600°C, respectively. Results indicated that annealing sample in 600°C is best characteristics and increasing annealing temperature improves electric characteristics.