High-efficiency GaAs solar cell on flexible substrate

Jin-Wook Jeong^{1,2}, Byung-Kwon Ju¹, Ki-Young Dong¹, Jung-II Lee², Il-Ki Han²

¹Display and Nanosystem Laboratory, College of Engineering, Korea University ²Nano Device Research Center, Korea Institute of Science and Technology

In this paper, we report the electrical characteristics of GaAs solar cell on flexible substrate. III-V compound solar cell structure was grown on <100> oriented GaAs substrates by molecular beam epitaxy (MBE). The top electrode of finger type was deposited on thin Ti/Pt/Au multi-layer by e-beam evaporator. The fabricated GaAs solar cell was bonded GaAs solar cell on polyether-sulfone (PES) substrate using wafer transfer technique. III-V GaAs flexible solar cell was fabricated by chemical mechanical polishing (CMP) technology. Current-voltage (I-V) characteristics were measured by solar cell measurement system at room temperature. The III-V GaAs flexible solar flexible solar cell has a short-circuit current density of 25mA/cm², an open-circuit voltage of 860mV, a fill factor of 74%, and a conversion efficiency of 15% at one sum, AM1.5.