Phase Analysis of Ti-Ta-Nb Alloy Surface by Micro-XRD

Han-Choel Choe

(Chosun University, 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju, South Korea)

1. Introduction

Ternary titanium alloys have focused on biocompatibility and improved the mechanical property for dental and biomedical applications. Properties of these alloys depend on their microstructural phases. Micro-XRD methods were used for determination of the phases at the point of specimens. In this study, phase of Ti-Ta-Nb alloy were identified by Micro-XRD.

2. Materials and Method

Ti-Ta-Nb, Ti-Ta-Zr, Ti-Nb-Ta and Ti-Nb-Zr alloys were prepared by arc melting and homogenized for 24 hr at 1000°C in an argon atmosphere. Micro-XRD was performed at several points on each specimen and more points for specimens with substantial compositional variation. For conventional XRD (Rint-2000, Rigaku), CuK radiation was employed at 40kV and tube current of 100 mA. For Micro-XRD (Rint-2000), the tube current was 300 mA. The diameter of each MicroXRD analysis site was approximately 100 μ m.

3. Results

For Ti-Ta-Zr, all spectra had major peaks for alpha-titanium with some peaks for beta-titanium. For Ti-Nb-Zr, all spectra had major peaks for beta-titanium, and only Ti-Nb-7Zr showed 101 and 102 peaks for alpha-titanium. For Ti-Nb-Ta, most peaks were assigned to beta-titanium, but Ti-Nb-3Ta and Ti-Nb-7Ta also had peaks for alpha-titanium. Micro-XRD analyses were generally consistent with conventional XRD from larger regions of approximately 1 cm diameter. XRD showed that all peaks for Ti-Ta-3Nb and Ti-Ta-7Nb were for alpha-titanium, but Ti-Ta-10Nb had the 211 peak for beta-titanium and Ti-Ta-15Nb had four major peaks (110, 200, 211 and 310) for beta-titanium.

It was confirmed that Micro-XRD can be used for identification of dental alloy with variation of specimen position.