Dual Row Rotator Cuff Repair: Current & Evolving Techniques

Korean Society of Shoulder & Elbow Seoul, Korea March 2009

> Jeffrey Halbrecht, M.D. San Francisco, CA

Retater Cuff Repair: Reasons for Failure

- · Inadequate healing
 - Poor tendon quality (degenerated, retracted)
 - Muscle atrophy
 - Inadequate tendon bone contact (footprint restoration)
- · Inadequate repair
 - Poor anchor fixation strength
 - Weak anchor
 - Osteoporotic bone
 - Inadequate initial fixation (knot tension, loop security)
 - Late suture or knot failure

The Problem with Single Row Repair

- · High rate of failure (recurrent tear)
- · Limited contact area (footprint)

De Recurrent Tears Matter? Strength Cerrelates with Cuff Integrity!

- · Lafosse JBJS July 2007
- · Cole: J Shoulder Elbow Surg. July 2007
- · Boileau: JBJS Jume 2005 (FE strength 7.3 vs 4.7 Kg)
- · Sugaya JBJS Am. 2007 May
- · Lichtenberg: Knee Surg Sp Tr Arth. 2006 Nov
- · Bishop: J Shldr Elbw Surg. 2006 May-Jun

Advantages of Dual Row

- · Restore anatomic foot print
- · Minimize pop motion at repair site

17th Congress of Korean Shoulder and Elbow Society

Special lecture

- · Limit synovial fluid migration into repair site
- · Extend healing surface
- · Improve biomechanical strength with multiple points of fixation
- · Improve contact pressure
- · Stronger repair?
- · Lower re-tear rate?
- · Faster rehab?
- · Better results????

Feetprint: Summary

- Normal Approximately 12~15mm
 - Nottage Arthroscopy 2004
- \cdot Single Row
 - 5~6 mm
- · Technique
 - Two separate rows
 - Suture bridge
 (Suture spanning)
 (transosseous equivalent)

Review literature on Dual Row:

- · Biomechanical studies
 - Tensile strength
 - Gap formation
 - Motion at repair site
 - Contact surface
 - Contact pressure
- · Clinical results
- · Cuff integrity on f/u imaging
- · Single row vs
 - 2 separate rows
 - suture bridge
- · The significance of complex suture patterns

Biemechanical Studies: Simple Single Rew vs. Dual Rew & Transesseeus Meier: Dual Rew Strenger te Cyclic Leading

2 rew > single rew >TOS

- · (TOS) failure 75.3 cycles
- \cdot (SRSA) failure 798.3 cycles
- \cdot (DRSA) had no failures

Kim: (AJSM 2006) Less Gap Formation Higher Ultimate Tensile Load

- $\cdot\,$ Less gap formation with cyclic loading with 2 row repair (p(.05)
- · Double row 46% higher UTL (p<.05) & reduced strain
- Kim DH, Elattrache NS, Tibone JE, et al.. Biomechanical comparison of a single-row versus double-row suture anchor technique for rotator cuff repair. Am J Sports Med. 2006;34: 407-414

Tueheti, Itei et al AJSM 2005:Deuble Rew Better Centact Area

- $\cdot\,$ Double Row greatest contact area
- $\cdot~$ 42% greater than TOS
- $\cdot~$ 60% greater than single row
- · Single row restores 46%
- $\cdot\,$ Dual row restores 100% footprint

Meier SW: Less Motion at Repair Site (submitted) Biomechanical Studies: Double Row vs Complex Single Row Ma: Higher Ultimate Tensile Load (Human Cadaver)

- $\cdot\,$ Double Row mean UTL $\,287\pm24$ N $\,$
- · 3 single-row repairs tested
 - simple suture 191 N;
 - MMA 212 N
 - massive cuff $250 \text{ N} (P \langle .05 \rangle).$

Nelson: Modified Mason Allen May Be Biomechanically Equivalent.. But Double Row Has Greater Foot Print (Sheep)

· Same cyclic load to failure

- · 74% greater surface area
 - mean surface area of 258.23±69.7 mm2 versus 148.08±75.5 mm2 for single-row fixation, a 74% increase (P=.025).

Baums: Two Row With Medial Mattress and Lateral Mason Allen Stronger Than Single Row Mason Allen (Time Zero Sheep study)

 $\cdot\,$ Two Row repair with double row Mason Allen superior to isometric cyclic loading as well as Ultimate tensile loading

Biomechanical characteristics of single-row repair in comparison to double-row repair with consideration of the suture configuration and suture material.

Knee Surg Sports Traumatol Arthrosc.2008 Aug 29. [Epub ahead of print)Baums MH, Buchhorn GH, Spahn G, Poppendieck B, Schultz W, Klinger HM.

Biomechanical Studies: Which Dual Row is Better?

Suture Bridge vs Double Row Park: Improved Contact Pressure and Contact Area with Suture Bridge

 $\cdot \,$ Contact area

- 4 suture bridge (criss-cross)	124 mm
- 2 row (separate)	63.3 (p< .05)
Contact Pressure	
– 4 suture bridge	.27 Mpa

- 2 row .19 M (p=.002)

Park: Improved Ultimate Load with Suture Bridge

- · Suture Bridge Tranosseous equivalent 443.0 +/- 87.8 N
- · Double-row technique(2 separate rows) 299.2 +/- 52.5 N (P= .043)
- Gap formation the same…
- \cdot 30 cycles (10~180 N) then pullout
- Used interference screw laterally

Cuff Integrity:

Correlation With Clinical /Biomechanical Results Ozbaydar: Double vs. Single Row

Rabbit Healing Study: Tested at Time Zero, 4 and 8 weeks

- $\cdot\,$ Larger number of healed tendon bone interfaces in 2 row at 8 weeks
- $\cdot\,$ Greater mean load to failure in 2 row
- $\cdot\,$ Improved load to failure correlated to increase surface area of healed tendon

Better Healing Rate: Charousset

- · Anatomic (CT ?arth)
 - Dual Row
 - \cdot 19/31
 - vs Single Row
 - $\cdot \ 14/35$
- \cdot Retear
 - Dual
 - · 7/31
 - Single
 - · 14/35
- \cdot Clinical results equal

Huijsman: Ultra Sound Follow up

- \cdot 242 shoulders
- \cdot 22 mo f/u
- $\cdot\,$ Good strength and ROM..
- $\cdot~$ 91% G/E results
- $\cdot\,$ Intact Repair by US 83% overall
- · Small 88%
- \cdot Medium 93%
- · Large 78%
- Massive 47%

Anderson Ultrasound Study: Excellent Clinical Results Low Re-tear Rate

- $\cdot~$ 52 shoulders
- $\cdot \,\, 2$ separate rows of suture anchors
- $\cdot~$ Fu min 2 years
- · Exc clinical results
- $\cdot~$ 17% retear on f/u U/S

Sugaya et al: Arthroscopy 2005

Single Row vs Dual Row

- Retear Rate (MRI-35 mo)
 - Single row 26%
 - Dual Row 10%
- $\cdot\,$ No difference in clinical scores
- $\cdot\,$ Retrospective non-randomized

Sugaya: Prospective MRI Study (2007) Improved Cuff Integrity

- · 86 pts
- \cdot 31 months
- \cdot 2 row
- $\cdot~$ 83% intact on fu MRI
 - 5% small– medium
 - 40% large- massive

LaFosse: CT Arthrogram

Excellent Clinical Results - Low Re-tear Rate

- \cdot 105 shoulder
- \cdot 22 mo f/u
- \cdot CT arthrogram
- $\cdot\,$ Constant score 43 pre op 80 post op
- · 12/105 failed (11%)
 - Small 0%
 - Large/massive 17%
- $\cdot\,$ Intact repairs correlate with better strength and AROM

Frank: Suture Bridge TOS Equivalent

88% Intact on MRI at F/U

 Frank J. B et al: Repair Site Integrity After Arthroscopic Transosseous-Equivalent Suture-Bridge Rotator Cuff Repair
 Am. J. Sports Med., Aug 2008; 36: 1496 - 1503

Large Tears ()3CM) Better Clinical Results with Dual Row Park et al AJSM July 2008 • 78 pts (half single row/ half dual row)

- · Dual Row
 - $\langle 3 \text{ cm no difference} \rangle$
 - $> 3~{\rm cm}$
 - $\cdot\,$ Improved S&E scores Constant scores and Shoulder Strength Index

On the Other Hand…

Dual Row vs Single Row

No Difference

Grasso et al Arthroscopy 1/2009

- $\cdot\,$ No stratification by size of tear
- $\cdot\,$ No imaging to evaluate re-tear
- $\cdot\,$ No suture bridge
- · No "rip stop"
- · Short term f/u (2 yrs)
- · Prospective, randomized
- · 40 pts each group
- $\cdot\,$ Two row simple technique

Dual Row: Summary of Literature

- Dual row restores better footprint (100%)
- $\cdot\,$ Simple dual row stronger than simple single row
- · ultimate tensile load, cyclic loading
- · Complex dual row stronger than complex lateral row (Mason Allen)
- Dual row has less gap formation
- \cdot Cyclic loading
- Better cuff integrity on imaging f/u -2yrs
- (CT arthrogram, MRI, U/S)
- $\cdot\,$ Better healing in rabbit f/u study
- $\cdot \,$ Increased contact pressure and contact area
- · Dual Row using Suture bridge better than two separate rows.
 - Ultimate Load, contact pressure, contact area
- · Clinical Benefits
 - Strength and function ARE better with intact repair (esp for LARGE tears)
 - and dual row results in an intact repair more often than single row
- ... There may be no benefit for smaller tears!

When I do Dual Row

- $\cdot~$ 80% of cases
- $\cdot \,$ Reducible tendon
- $\cdot\,$ Adequate tissue

Dual Row: Technical Options & Evolving Techniques

- · Original Technique: Two Separate Rows
 - Tie sutures both rows
 - $\cdot\,$ Increased OR time
 - · Increase technical difficulty
 - $\cdot\,$ Increase knots in SA space
- $\cdot\,$ Newer Techniques
 - Knotless locking anchors for lateral row
 - Faster
 - $\cdot\,$ No knots
 - $\cdot\,$ ability to tension

Dual Row: Technical Options & Evolving Techniques

- · Newer Techniques- Cont.
 - Suture Bridge: Compress footprint
 - with knots
 - Suture Bridge
 - $\cdot\,$ with knotless locking anchors
- Evolving Techniques
 - Suture bridge with medial Rip-Stop (A-MA) stitch
 - Knotless medial & lateral row

Dual Row: Original Technique

Two Separate Rows with Knots Medial and Lateral

Dual Row: Two Separate Rows Knotless Lateral Row

$\cdot\,$ Medial row standard mattress

Dual Row Technique: Suture Bridge

Need Medial Knots: Busfield et al AJSM March 08 Epub

· Cadaver Study

- \cdot Suture span with / without medial knots
- · Decreased gap formation, increased yield load and ultimate load with medial knot

Rotator Cuff Repair: Reasons for Failure

- · Inadequate healing
 - Poor tendon quality (degenerated, retracted)
 - Muscle atrophy
 - Inadequate tendon bone contact (footprint restoration)
- \cdot Inadequate repair
 - Anchor fixation strength
 - \cdot Osteoporotic bone
 - Inadequate initial fixation (knot tension, loop security)
 - Suture or knot failure

Versalok: Self Locking Anchor

Versalok: Strong pullout

- $\cdot\,$ Load to failure
 - Cortical bone
 - · 375 N
 - Cancellous bone
 - · 379 N
- \cdot Biocorckscrew
 - 259 N
- \cdot Bioknotless
 - 124 N
- BioPushlock
 - 144 N

Versalok: Allows Secure Knotless Suture Spanning

- · Elliminate Multiple knots
 - Knotless anchors
- Decrease Surgical Time
- Elliminate knot tying
- Optimal Tension
 - Tensionable anchor
 - No loop security issues
- $\cdot\,$ No risk of knot slippage

- \cdot Costs
 - Multiple load anchor
 - Faster technique

Knotless Locking Anchors: Existing Options...

- $\cdot\,$ Lock and Tension (all subcortical)
- \cdot Versalok
- · Opus: · Original (Metal)
 - Magnum (PEAK)
- \cdot Locks (extra cortical)
 - KFX
- $\cdot \,$ Interference fit
 - Pushlock

Pullout Strength The Versalok: Tensioning Gun Versalok Basic Technique Versalok Basic Technique

Versalok Benefits: Simplicity

- $\cdot\,$ Simple technique:
 - No drilling
 - Single step insertion
 - Single or double loading
 - Easy/accurate tensioning

Versalok Benefits: Security

- · Secure fixation even in poor quality bone !
 - Circumferential compression
 - Cortical and subcortical fixation
 - Excellent pull-out strength

Versalok Benefits: Versatility!

- $\cdot\,$ Can use any suture
- $\cdot\,$ Can use any suture passing method
- · Single or double load anchor

- Suture first, or anchor first
 - Avoid inadvertent suture unloading

Versalok Benefits: Tensioning

- · Allows tensioning of repair after anchor inserted! (before deployment)
- · Secure suture tension every time
- Tensioning wheel for accuracy

Versalok: Versatile Technique Options

- · Single row lateral fixation:
 - $\cdot \,$ Simple suture
 - \cdot Inverted mattress
 - $\cdot\,$ Arthroscopic Mason Allen (single step)
- $\cdot\,$ Double row fixation (improved footprint)
 - $\cdot\,$ Separate Medial & lateral suture rows
 - $\cdot\,$ Suture Bridge

The Versalok: Advantages Summary

- \cdot Arthroscopic
- \cdot Knotless
- \cdot Simple!
 - Single step
 - No pre-drilling
- $\cdot \,$ Secure fixation
- · Accurate tensioning of repair
- $\cdot\,$ Single or double loading of anchor
- $\cdot\,$ Allows knotless medial and lateral rows

Basic Suture Bridge

Technique #1

 \cdot Medial matress-lateral locking anchor

Basic Suture Spanning Technique #2

- Multiple Simple sutures
 - · No medial knots
- $\cdot \,$ Lateral locking anchor

Double Criss-Cross

Suture Spanning

 $\cdot\,$ With Medial Row Fixation

Dual Row: Criss-Cross Dual Row: Criss-Cross Dual Row: Criss Cross-cont, Dual Row: Criss Cross-cont, Dual Row: Criss Cross-cont

Dual Row: Criss-Cross-cont.

Dual Row: Criss Cross

Dual Row Suture Spanning: With Rip Stop (Mason-Allen)

Dual Row Suture Bridge

With Medial "Rip Stop"

Next Generation Suture Bridge: Knotless Lateral & Medial Rows

With Rip Stop

Next Generation Suture Bridge: Knotless Medial & Lateral Rows

With Rip Stop

Med and Lat Knotless: Rip Stop

Conclusion

- $\cdot\,$ Dual Row Repair
 - Stronger to cyclic loading and UTL
 - Less gap formation in some studies
 - Better cuff integrity in imaging studies
 - Better contact pressure and contact area
 - Better restoration of footprint
 - Better strength correlating to cuff integrity
 - Improved clinical results for large/massive tears
- · Suture Bridge
 - Further improves contact pressure/area & strength (UTL)
 - Best if used with medial knots
- · Knotless locking anchor (Versalok)
 - Faster, easier, no knots to impinge
 - Stronger pull-out , consistent suture tension
- $\cdot\,$ Techniques still evolving
 - "Even" tension med- lat rows
 - Dual Row Med & Lat knotless....w Rip Stop

What Would You Rather Have?

One point of fixation..... Ot Two ?

THANK YOU!