Turkmenbashi 항만공사 부유토사의 이송확산 연구

A Study on Transport of Suspended Sediment arising from Construction of Turkmenbashi Port

1. 서 론

본 연구는 카스피해에 위치한 투르크멘바쉬 (Turkmenbashi)항 개발을 위한 기초자료조사 사업의 일환으로 대상해역에서 호안 축조, 준설등 항만공사 로 인해 발생한 부유토사의 이송 확산 범위를 추정하 는데 있다. 투르크멘바쉬(Turkmenbashi)항은 Fig.1에 서 보는 바와같이 카스피해(The Caspian Sea) 연안에 있어 카스피해내에서도 유라시아를 TRACECA(Transport Corridor Europe-Caucasus-Asia) Project(TACIS, 2000) 중에서도 최고의 지정학적 중 심에 위치하여. 카스피해 인근 국가중 최고 물류허브 로 부상이 기대되는 곳이며, 항만 배후의 기존 육상 (도로, 철도)수송인프라가 거의 구축 완료단계에 있 다. 투르크멘바쉬(Turkmenbashi)항 현대화 사업은 최 근에 Fig.2와 같이 1,2단계로 구분하여 계획되었다(국토해양부, 2009).

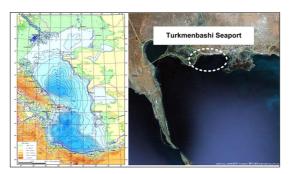
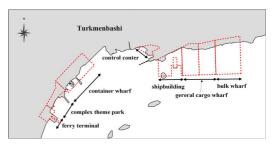



Fig. 1. Location of Turkmenbashi Seaport

Fig. 2. Development plan for Turkmenbashi Seaport

2. 수치모의 실험

2.1 실험개요

본 연구에서 사용된 모형은 Masch 등(1971)에 의해 개발된 물질의 이류, 확산을 산정하는 2차원 연직적 분 모형인 STTM모형을 근간으로 하여 신뢰성과 효 율성을 가지며, 난류 이류·확산 방정식을 2차원 수평 흐름 내의 이류·확산 방정식으로 수립하여 정확성을 가진다. 수치모형의 범위는 해수유동 수치모형과 동 일하게 구성하였으며, 부유사확산의 변동성이 충분 히 검토될 수 있는 인근을 포함하는 영역(Fig. 3)으로 구성되었다. 대상해역에서는 조석이 거의 없어 관측 된 바람자료(Table 1)를 토대로 주요 바람인 N,NE 방 향에 대해서 해수유동과 오염확산 수치모형실험을 통해 항만 공사중 발생한 부유토사의 시·공간적 확산 범위을 추정하였다. 부유토사 이송확산 실험의 입력 자료인 해수유동장 계산을 위한 해수유동 모의실험 에 관한 내용은 Table 2에 나타냈으며, 해수유동장의 모의결과는 Fig.4에 있다.

^{1 ㈜}혜인이엔씨 기술연구소

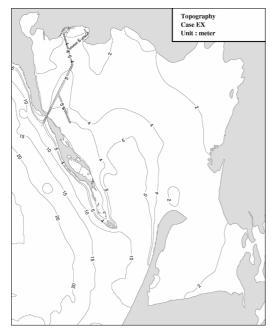


Fig. 3. Bathymetry chart of Turkmenbashy Bay

Table 1. Observed monthly averaged wind(m/s)

	Month											
	1	2	3	4	5	6	7	8	9	10	11	12
N	5.8	5.7	6.5	6.3	6.5	5.5	5.2	5.5	5.8	5.8	5.8	5.0
NE	3.2	4.0	4.0	5.9	4.1	5.3	5.4	5.0	4.5	4.6	4.8	3.8
Е	5.4	5.0	3.6	3.6	3.5	4.0	4.8	3.8	3.4	3.5	3.5	5.0
SE	3.0	3.0	2.1	2.1	2.1	2.5	2.5	2.4	2.2	2.2	2.0	2.8
S	3.2	3.2	2.9	2.9	2.5	2.8	2.6	2.6	2.4	2.4	2.4	3.0
SW	3.2	3.0	3.6	3.5	3.0	3.5	3.6	3.3	2.6	3.0	2.5	3.0
W	4.0	4.0	4.4	4.3	4.2	4.2	4.1	4.1	3.0	3.3	3.2	4.0
NW	3.8	3.8	5.6	5.6	5.5	6.7	6.7	6.7	5.1	5.1	5.1	3.8

^{**} Turkmen Maritime & River Line (Form 1.8, Port code 741098)

Table 2. Description of hydrodynamic modeling

Contents	Description				
Current Model	ECOMSED can calculate generalized open boundary conditions, tracers, better bottom shear stresses through a submodel for bottom boundary layer physics, surface wave models, noncohesive sediment transport, and dissolved and sediment-bound tracer capabilities HydroQual's state-of-the-art water quality model				
Domain	Turkmenbashi Sea including Turkmenbashi Seaport (60km × 75km)				
Grid system	Grid Size : 200m (300 × 375)				
Wind input		nd speeds in the dominant ection of N, NE, E, W, NW			
Evnoriment	Case EX-N	Wind 6.5m/s: N			
Experiment	Case EX-NE	Wind 5.9m/s: NE			

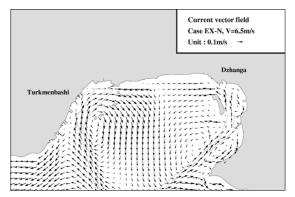


Fig. 4 Current vector field (Case EX-N) near Turkmenbashi Seaport

2.2 이송 및 확산 실험

수치모형은 다음과 같은 가정을 통하여 2차원 수 평흐름내의 이류·확산 방정식으로 수립하였다.

- 분자확산은 난류확산에 비해 아주 작으므로 무시
- 확산계수들은 난류확산과 미소한 이류의 효과를 합성하여 표시
- 조류속, 수송, 확산특성은 단위폭당 연직 평균된 흐름으로 해석
- 공사시 발생 부유사(SS)에 의한 오염확산 형태를 파악함에 있어 선수행 된 해수유동 모의실험에 의한 조위, 조류 등 해수유동 모의결과를 부유사 확산수치모형의 기본입력자료로 구성
- 오염부하시 오염부하형태는 연속방류형태로서 산정하였으며, 각 실험안별로 각각 수행하여 인 근해역에서의 부유사확산의 형태를 추정

기본 방정식은 식(1)과 같이 나타낼 수 있다.

$$\begin{split} \frac{\partial C}{\partial t} &= \frac{\partial}{\partial x} (E_x \frac{\partial C}{\partial x}) + \frac{\partial}{\partial y} (E_y \frac{\partial C}{\partial y}) \\ &- u \frac{\partial C}{\partial x} - v \frac{\partial C}{\partial y} + S_i + S_o \end{split} \tag{1}$$

여기서, C 는 보존량의 농도(SS)

 S_i , S_o 는 sink와 source항 E_x , E_y 는 각 방향의 확산계수 (Harleman, 1964)

여기서, u, v는 연직평균된 x, y 방향의 순간속 도로서 해수유동모형에 의하여 산정된 시간별 변동 x, y은 조도계수, y는 총수심이다.

식(1)을 유한차분체계로 전개하여 다단계 음해 (Multi-step implicit)법에 의해 산정한다. 이류 항은 상측의 격자망에서 수렴과 관계가 있으며 격자의 위치는 속도의 방향에 의존한다. 부유토사 이송·확산 모의실험 내용은 Table 3에 있다.

Table 3. Description of suspended sediment transport modeling

Contents	Description			
Numerical Model	2-D implicit Suspended sediment numerical model			
Domain	Near Turkmenbashi International Seaport (60km × 75km)			
Grid system	Grid size: 200m (300 × 375)			
	Estimation of suspended sediment transport for 4experiment cases			
	Case A1-N	Wind direction: N The work amount of 1st Phase 1st yr		
Evenoriment	Case A1-NE	Wind direction : NE The work amount of 1st Phase 1st yr		
Experiment	Case A2-N	Wind direction: N The work amount of 2st Phase 1st yr		
	Case A2-NE	Wind direction : NE The work amount of 2st Phase 1st yr		

2.3 경계조건

초기조건은 수치모형의 대상 전해역에 임의의 농 도를 설정하고 외부로부터 오염물질이 투입될 경우 에 전해역에 임의의 농도를 부여하거나 전해역의 초 기농도를 없는 것으로 가정한다.

육지경계면에는 경계면을 가로질러 이류·확산이 일어나지 않으며, 오염물질원은 임의의 위치에서 임 의 농도를 연속적인 방출일 경우로 했다.

오염물질(SS)은 체류시간 동안에 보존성이 있다고 가정하여 연속방류 형태로 산정하였다. 이는 보존성 물질이 반응성 물질인 경우보다 해수환경에 미치는 영향이 상대적으로 크므로 공학적인 관점의 추정에 서는 합리적이다.

(1) 공종별 부유사 발생량 산정

부유사 발생 원단위는 해저토질의 성상, 사석의 상 태, 수심, 유속에 따라 달라지므로 일정한 원단위를 정하는데 어려움이 있다. 본 연구에서는 일본에서 사 용하고 있는 부유사 발생 원단위와 그 추정 방법을 참 고하고 적용하여 공종별 발생량을 산정했다.

사석투하 공사시에 적용한 부유사 발생 원단위는 일본 운수성 제4항만 건설국 해역정비과(1982)에서 제시한 5.70kg/㎡을 사용했다.

준설공사시 적용할 부유사 발생 원단위는 일본 운수성 제4항만 건설국(1976)의 『준설매립 영향분석조사 보고서』및 『준설 및 매립에 의한 오탁영향의사전예측 Manual』에 제시된 준설장비 및 준설대상

토질에 따른 부유사 발생 원단위을 이용했다.

Table 4. Basic unit of SS sources generated by rubble stone dropping

Riprap work	Equipment	SS generation unit (kg/m ³)	
Shore	Crane(100t)	5.70	
Crushed Rock	Barge (850 m³)	5.70	
Sand and Soil	Barge (850m³)	5.70	

^{**} The 4th Office of Port & Harbor Construction Bureau, Japan Ministry of Transport(1982).

방파제보강 공사시 항로준설은 그라브(7.5㎡)를 이용할 계획이며, 준설지역의 지반조사결과 대부분이점토질 토사로 구성되어 발생원단위 중 그라브준설의 38.0kg/㎡를 채택하여 적용했다.

공종별 부유사 발생량을 이용하여 공사시 가장 많은 부유사가 발생될 것으로 예상되는 시점은 사석공과 준설공이 동시에 이루어지는 시점으로 그에 따른 부유사 발생량을 적용하여 계산을 실시했다.

Table 5. Basic unit of SS sources generated by dredging work

Working	Equipment	SS generation unit(kg/m³)		
resource		Sand	Silt	
	Pump	2.8	23.8	
	Pump for pollution	-	1.6	
Dredging	Grab	8.4	38.0	
	Enclosed grab	-	3.5	
	Drag suction	-	14.8	

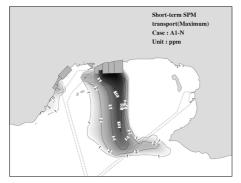
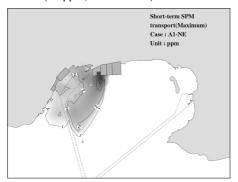

^{**} Manual of predicting turbidity by dredging and landfill(The 4th Office of Port &Harbor Construction Bureau, Japan Ministry of Transport. 1982)

Table 6. Estimated maximum amount of suspended sediments due to port construction works


	The amount of SS (kg/hr)		
		Cut excavation	453.5
	Shipyard	Riprap	199.0
		Armor stone	14.8
C A1		Dredging	7399.4
Case A1 (1st phase	General	Cut excavation	162.0
1st year)		Riprap	474.6
	cargo terminal	Armor stone	20.4
	Cililliai	Dredging	5427.8
	Ferry terminal	Dredging	1781.7
		Cut excavation	324.1
Case A2	General cargo terminal	Riprap	143.3
(2nd		Armor stone	525.5
phase 1st	commu	Dredging	6820.7
year)	Bulk terminal	Dredging	4011.2

3. 실험 결과


공사 수행시 발생하는 오염원의 확산이 준평형 상태가 될 때까지 수치모의 계산을 실시하여 준평형 상태에 도달했을 때의 부유토사 이송확산에 의한 농도 분포(Fig. 5~Fig. 8)를 제시했다. 초과농도 1ppm 한계의 영향 범위 결과는 Table 7에 제시하였다.

Fig. 5. The distribution of SS- concentration (in ppm, Case A1-N)

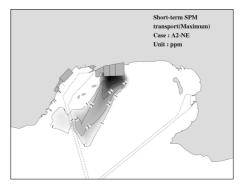

Fig. 6. The distribution of SS- concentration (in ppm, Case A1-NE)

Fig. 7. The distribution of SS- concentration (in ppm, Case A2-N)

감사의 글

본 연구는 국토해양부의 "투르크맨바쉬항 현대화 사업 타당성 조사 및 기초자료조사" 사업의 지원으로 수행되었습니다.

Fig. 8. The distribution of SS- concentration (in ppm, Case A2-NE)

Table 7. Estimated impact range of suspended sediment(SS) transport

Case	.		ce(km) f narging s	SS- Impact		
		East	West	South	Area (km²)	
Case A1	N	2.4	0.6	3.4	7.52	
	NE	0.2	2.4	2.4	5.08	
Case A2	N	2.4	0.4	3.4	4.40	
	NE	0.4	2.2	2.8	3.80	

참고문헌

국토해양부 (2009). 투르크멘바쉬항 현대화사업 타 당성검토 및 기초자료조사 보고서

Harleman, D.R.F.(1964). The significance of longitudinal dispersion in tidal estuaries. Proc. 2nd Int. Water Poll. Res. Conf. Tokyo.

Masch, F. D., Narayanan, M., and Brandes, R. Y. (1971) A short-term conservative transport model for shallow estuaries. University of Texas Hydraulic Engr. Lab., Austin, TX. Technical Report HYD12-7104.

TACIS (2000). TRACECA Traffic and Feasibility studies: Feasibility study on the Rehabilitation and Modernization of Navigational Aids Systems in Caspian Sea.

Turkmen Maritime & River Line. Form 1.8, Port code 741098

運輸省第四港彎建設局海域整備課 (1982). しゅんせつ埋立による濁り等の影響の事前予測マニュアル 昭和57年 3月

運輸省第四港彎建設局 (1976).浚渫埋立影響分析調查報告書 昭和51年 3月