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ABSTRACT 

This paper presents a position tracking control of a flexible beam using the piezoelectric actuator. This is achieved by implementing 
both feedforward hysteretic compensator of the actuator and PID feedback controller. The Preisach model is adopted to develop the 
feedforward hysteretic compensator. In the design of the compensator, estimated displacement of the piezoceramic actuator is used 
on the basis of the limiting triangle database that results from collecting data of the main reversal curve and the first order ascending 
curves. Experimental implementation is conducted for position tracking control and performance comparison is made between a PID 
feedback controller without considering the effect of hysteresis, and a PID feedback controller integrated with the feedforward 
hysteretic compensator. 
 
 

1. Introduction 

As it is well known, a smart structure is a system included 
to smart materials to perform sensing, control, and 
actuation. Smart structures have outstanding characteristics 
such as high resolution and fast response. So, they are 
being applied increasingly in many fields such as micro-
positioning [1-3], vibration suppression [4]. However, their 
high nonlinearity limits control accuracy as well as the 
scope of application. Hysteresis in piezoceramic materials 
is a kind of nonlinearity with nonlocal memory. Because of 
hysteresis, the response of the piezoceramic to an applied 
input voltage is impossible to predict without considering 
its effect. Therefore, in order to gain a high performance in 
control, the hysteresis has to be reduced or eliminated.  

The main contribution of this work is to develop the 
compensator for hysteresis of the piezoactuator and 
incorporate with the flexible beam structure in order to 
achieve an accurate position tracking control of tip 
displacement. The hysteretic compensator is designed on 
the basis of Preisach model. In Preisach model, the main 
reversal curve and the first order ascending curves for 
numerical implementation are used to get limit triangle 
database. On the other hand, the flexible beam is modeled 

using finite element method to obtain modal parameters 
such as natural frequency. Then, the position tracking 
control of a flexible piezoelectric beam is accomplished by 
using a PID feedback controller combined with the 
feedforward hysteretic compensator. Performance 
comparison between without and with the hysteretic 
compensator is made via experimental realization. 

2. Modeling of Piezoactuator Hysteresis 

The Preisach model can be numerically implemented by 
two approaches [5]; the first is to use the following formula 
for the computation of the input. 

𝜇𝜇(𝛼𝛼1,𝛽𝛽1) = −
𝜕𝜕2𝑌𝑌(𝛼𝛼1,𝛽𝛽1)
𝜕𝜕𝛼𝛼𝜕𝜕𝛽𝛽

                                                   (1) 

where, 𝑌𝑌(𝛼𝛼1,𝛽𝛽1) is the change in output 𝑦𝑦(𝑡𝑡) as the input 
decreases from 𝛼𝛼1  to  𝛽𝛽1 . Although this approach is 
straightforward, it encounters the main difficulty that the 
double numerical differentiation of experimentally 
obtained data may amplify errors seriously. Therefore, the 
second approach, the numerical implementation of the 
Preisach model, is preferable. It circumvents the above 
difficulty. This approach is based on the data collected 
from the main ascending curve and the first order reversal 
curves [5-7]. 

In our work, instead of using the data collected from the 
main curve and the first order reversal curves, we use the 
data collected from the main reversal curve and the first 
order ascending curves for numerical implementation of 
the Preisach model. For the case of monotonically 
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increasing of excitation voltage, at the time  𝑡𝑡𝑛𝑛 , the 
corresponding 𝛼𝛼𝛽𝛽 plane is shown in the Figure 1.  

The expansion of the piezoceramic can be expressed as 
follows. 

𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 �𝑢𝑢(𝑡𝑡𝑛𝑛)� = 𝑦𝑦𝑃𝑃𝑒𝑒 (𝑚𝑚) + � 𝜇𝜇(𝛼𝛼,𝛽𝛽)𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽
Δ𝑆𝑆

                   (2) 

 where, 𝑦𝑦𝑃𝑃𝑒𝑒 (𝑚𝑚) is the expansion of the piezoceramic at the 
nearest pair of extrema (include one maximum and one 
minimum). We assume that there are three pairs of 
extrema  (𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖) 𝑖𝑖 = 1, 2, 3 . Therefore, 𝑆𝑆+(𝑡𝑡𝑛𝑛)  is 
subdivided into sub-regions as shown in Figure 2.  

The expansion of the piezoceramic actuator is given as 

𝑦𝑦𝑃𝑃𝑒𝑒 (3) = 𝐻𝐻(𝑆𝑆3
+) + 𝐻𝐻(𝑆𝑆2

+) + 𝐻𝐻(𝑆𝑆1
+)                                   (3) 

where, from the outputs corresponding regions  𝑆𝑆𝑖𝑖+ (𝑖𝑖 =
1,2,3 shown in Figure 3, the following mathematical 
expressions can be obtained. 

  

Figure 1 The 𝛼𝛼𝛽𝛽 plane in the case of monotonically 
increasing of excitation voltage 

 

Figure 2 The sub-regions constitute S+ 
 

 

 

𝐻𝐻(𝑆𝑆3
+) = 𝐹𝐹(𝛽𝛽2,𝛼𝛼3) − 𝐹𝐹(𝛽𝛽3,𝛼𝛼3)                                        (4𝑎𝑎) 

𝐻𝐻(𝑆𝑆2
+) = 𝐹𝐹(𝛽𝛽1,𝛼𝛼2) − 𝐹𝐹(𝛽𝛽2,𝛼𝛼2)                                        (4𝑏𝑏) 

𝐻𝐻(𝑆𝑆1
+) = 𝐹𝐹(0,𝛼𝛼1) − 𝐹𝐹(𝛽𝛽1,𝛼𝛼1)                                          (4𝑐𝑐) 

where, 𝐹𝐹�𝛽𝛽𝑗𝑗 ,𝛼𝛼𝑖𝑖� is the value corresponding to the triangle 
limited by 𝛽𝛽𝑗𝑗  and 𝛼𝛼𝑖𝑖 . According to Figure 4, this value can 
be expressed as follows. 

 𝐹𝐹�𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑗𝑗 � = 𝑔𝑔�𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑗𝑗 � − 𝑔𝑔(𝛽𝛽𝑖𝑖)                                             (5) 

where, 𝑔𝑔�𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑗𝑗 �  is the value at input 𝛼𝛼𝑗𝑗  of first order 
ascending curve  𝛽𝛽𝑖𝑖 ; 𝑔𝑔(𝛽𝛽𝑖𝑖) is the value at the input 𝛽𝛽𝑖𝑖  of 
main reversal curve. Substituting Eqs. (4) and (5) into Eqs. 
(2) yields 

𝑦𝑦𝑃𝑃𝑒𝑒 (3) = 𝑔𝑔(𝛽𝛽3) + �[𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]
3

𝑘𝑘=1

           (6) 

In general, with 𝑚𝑚 pairs of extrema, one has the following 
form. 

𝑦𝑦𝑃𝑃𝑒𝑒 (𝑚𝑚) = 𝑔𝑔(𝛽𝛽𝑚𝑚) 

               +�[𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]
𝑚𝑚

𝑘𝑘=1

                           (7) 

The second part of Eq. (2) is the value corresponding to the 
triangle limited by 𝛽𝛽𝑚𝑚  and 𝑢𝑢(𝑡𝑡𝑛𝑛) and expressed as follows. 

� 𝜇𝜇(𝛼𝛼,𝛽𝛽)𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽
Δ𝑆𝑆

= 𝐹𝐹�𝛽𝛽𝑚𝑚 ,𝑢𝑢(𝑡𝑡𝑛𝑛)� 

                                  = 𝑔𝑔�𝛽𝛽𝑚𝑚 ,𝑢𝑢(𝑡𝑡𝑛𝑛)� − 𝑔𝑔(𝛽𝛽𝑚𝑚)                    (8) 

Substituting Eqs. (7) and (8) into Eq. (2) yields 

𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 �𝑢𝑢(𝑡𝑡𝑛𝑛)� = 𝑔𝑔�𝛽𝛽𝑚𝑚 ,𝑢𝑢(𝑡𝑡𝑛𝑛)� 

                        +�[𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]
𝑚𝑚

𝑘𝑘=1

                  (9) 

Similarly, for the case of monotonically decreasing of 
excitation voltage as shown in Figure 5, an expression for 
expansion of piezoceramic actuator is developed as  

𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 �𝑢𝑢(𝑡𝑡𝑛𝑛)� = 𝑔𝑔(𝛽𝛽2,𝛼𝛼3) − 𝑔𝑔(𝑢𝑢(𝑡𝑡𝑛𝑛),𝛼𝛼3) 

                        +�[𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]
2

𝑘𝑘=1

               (10) 

In general, with 𝑚𝑚 pairs of extrema, we have the following 
form. 

𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 �𝑢𝑢(𝑡𝑡𝑛𝑛)� = 𝑔𝑔(𝛽𝛽𝑚𝑚−1,𝛼𝛼𝑚𝑚 ) − 𝑔𝑔(𝑢𝑢(𝑡𝑡𝑛𝑛),𝛼𝛼𝑚𝑚) 

                       + � [𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]
𝑚𝑚−1

𝑘𝑘=1

             (11) 
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Figure 3 The geometric calculation of 𝐻𝐻(𝑆𝑆𝑖𝑖+) 

 

Figure 4 The geometric calculation of 𝐹𝐹�𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑗𝑗 � 

 

Figure 5 The 𝛼𝛼𝛽𝛽 plane in the case of monotonically 

decreasing of excitation voltage 

Eqs. (9) and (11) give a numerical approach of Preisach 
model. In order to implement the model equation to 
determine the output to the input, a series of first-order 
reversal functions and a main ascending function for the 
piezoceramic actuator that are measured under static 
condition (i.e. the frequency of excitation voltage is fixed 
and set to be low) must be experimentally determined in 
advance. In our work, we use a series of first-order 
ascending functions 𝑔𝑔(𝛽𝛽,𝛼𝛼) and a main reversal function 
𝑔𝑔(𝛽𝛽) for the experiment database. In the case the point 
(𝛽𝛽,𝛼𝛼) does not lie on the grid point, it is determined by 
linear interpolation as follows. 

𝑔𝑔(𝛽𝛽,𝛼𝛼) = 𝑐𝑐0
𝛽𝛽𝛼𝛼 + 𝑐𝑐1

𝛽𝛽𝛼𝛼 𝛽𝛽 + 𝑐𝑐2
𝛽𝛽𝛼𝛼 𝛼𝛼 + 𝑐𝑐3

𝛽𝛽𝛼𝛼 𝛼𝛼𝛽𝛽                      (12) 

Or 

𝑔𝑔(𝛽𝛽,𝛼𝛼) = 𝑐𝑐0
𝛽𝛽𝛼𝛼 + 𝑐𝑐1

𝛽𝛽𝛼𝛼 𝛽𝛽 + 𝑐𝑐2
𝛽𝛽𝛼𝛼 𝛼𝛼                                       (13) 

Eq. (12) is used in the case the point (𝛽𝛽,𝛼𝛼) lies in a 
rectangle element, otherwise in the case the point 
(𝛽𝛽,𝛼𝛼) lies in a triangle element, Eq. (13) is used. 

3. Design of Hysteretic Compensator 

For the case of monotonically increasing of 
expansion 𝑦𝑦𝑑𝑑(𝑡𝑡𝑛𝑛) > 𝑦𝑦𝑑𝑑(𝑡𝑡𝑛𝑛−1), Eq. (9) can be written as 

𝑦𝑦𝑑𝑑(𝑡𝑡𝑛𝑛) = 𝑔𝑔�𝛽𝛽𝑚𝑚 ,𝑣𝑣(𝑡𝑡𝑛𝑛)� 

              +�[𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]
𝑚𝑚

𝑘𝑘=1

                       (14) 

Substituting Eq. (12) into Eq. (14) yields 

𝑦𝑦𝑑𝑑(𝑡𝑡𝑛𝑛) = 𝑐𝑐0
𝛽𝛽𝑚𝑚 𝑣𝑣(𝑡𝑡𝑛𝑛 ) + 𝑐𝑐1

𝛽𝛽𝑚𝑚 𝑣𝑣(𝑡𝑡𝑛𝑛 )𝛽𝛽𝑚𝑚  

              + �𝑐𝑐2
𝛽𝛽𝑚𝑚 𝑣𝑣(𝑡𝑡𝑛𝑛 ) + 𝑐𝑐3

𝛽𝛽𝑚𝑚 𝑣𝑣(𝑡𝑡𝑛𝑛 )𝛽𝛽𝑚𝑚� 𝑣𝑣(𝑡𝑡𝑛𝑛) 

              +�[𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]
𝑚𝑚

𝑘𝑘=1

                       (15) 

Therefore, the expression for estimating 𝑣𝑣(𝑡𝑡𝑛𝑛) is obtained 
by 
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𝑣𝑣(𝑡𝑡𝑛𝑛) =
𝑦𝑦𝑑𝑑(𝑡𝑡𝑛𝑛) − �𝑐𝑐0

𝛽𝛽𝑚𝑚 𝑣𝑣(𝑡𝑡𝑛𝑛 ) + 𝑐𝑐1
𝛽𝛽𝑚𝑚 𝑣𝑣(𝑡𝑡𝑛𝑛 )𝛽𝛽𝑚𝑚� − ∑ [𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]𝑚𝑚

𝑘𝑘=1

�𝑐𝑐2
𝛽𝛽𝑚𝑚 𝑣𝑣(𝑡𝑡𝑛𝑛 ) + 𝑐𝑐3

𝛽𝛽𝑚𝑚 𝑣𝑣(𝑡𝑡𝑛𝑛 )𝛽𝛽𝑚𝑚�
                                                                              (16) 

Similarly, for the case of monotonically decreasing of expansion 𝑦𝑦𝑑𝑑(𝑡𝑡𝑛𝑛) < 𝑦𝑦𝑑𝑑(𝑡𝑡𝑛𝑛−1), the expression for estimating 𝑣𝑣(𝑡𝑡𝑛𝑛) is 
obtained by 

𝑣𝑣(𝑡𝑡𝑛𝑛) =
𝑔𝑔(𝛽𝛽𝑚𝑚−1,𝛼𝛼𝑚𝑚 ) − 𝑦𝑦𝑑𝑑(𝑡𝑡𝑛𝑛) − 𝑐𝑐0

𝑣𝑣(𝑡𝑡𝑛𝑛 )𝛼𝛼𝑚𝑚 − 𝑐𝑐1
𝑣𝑣(𝑡𝑡𝑛𝑛 )𝛼𝛼𝑚𝑚 𝛼𝛼𝑚𝑚 + ∑ [𝑔𝑔(𝛽𝛽𝑘𝑘−1,𝛼𝛼𝑘𝑘) − 𝑔𝑔(𝛽𝛽𝑘𝑘 ,𝛼𝛼𝑘𝑘)]𝑚𝑚−1

𝑘𝑘=1

�𝑐𝑐2
𝑣𝑣(𝑡𝑡𝑛𝑛 )𝛼𝛼𝑚𝑚 + 𝑐𝑐3

𝑣𝑣(𝑡𝑡𝑛𝑛 )𝛼𝛼𝑚𝑚 𝛼𝛼𝑚𝑚�
                                                  (17) 

4. Modeling of Flexible Beam 

The schematic diagram of a composite beam is illustrated 
in Figure 6. This beam consists of an aluminum beam 
bonded by a piezoceramic actuator on one side of surface. 
In this section, the mathematical modeling of beam based 
on Euler-Bernoulli beam theory and finite element method 
is adopted. 

The element stiffness matrix can be derived as 

𝐊𝐊𝐞𝐞 =
𝐸𝐸𝐸𝐸
𝑙𝑙3 �

12 6𝑙𝑙 −12 6𝑙𝑙
6𝑙𝑙 4𝑙𝑙2 −6𝑙𝑙 2𝑙𝑙2

−12 −6𝑙𝑙 12 −6𝑙𝑙
6𝑙𝑙 2𝑙𝑙2 −6𝑙𝑙 4𝑙𝑙2

 �                              (18) 

The element mass matrix can be derived as 

𝐌𝐌𝐞𝐞 =
𝑚𝑚𝑙𝑙

420
�

156 22𝑙𝑙 54 −13𝑙𝑙
22𝑙𝑙 4𝑙𝑙2 13𝑙𝑙 −3𝑙𝑙2

54 13𝑙𝑙 156 −22𝑙𝑙
−13𝑙𝑙 −3𝑙𝑙2 −22𝑙𝑙 4𝑙𝑙2

�                    (19) 

The mass and stiffness matrices of entire beam are 
obtained by assembling the local mass and stiffness 
matrices using finite element method and combining the 
boundary conditions [8]. The governing equation of the 
beam in discretized form is given by 

𝐌𝐌�̈�𝐘 + 𝐊𝐊𝐘𝐘 = 𝐅𝐅(𝑡𝑡)                                                                 (20) 

 

Figure 6 The schematic diagram of the proposed flexible 
beam 

 

where, 𝐘𝐘 is the node displacement vector of the beam. 
𝐌𝐌 and 𝐊𝐊 are respectively global mass and stiffness 
matrices . 𝐅𝐅(𝑡𝑡) is the node force vector acting on the beam. 

The dynamic response of Eq. (20) can be expressed as 

𝐘𝐘(𝑡𝑡) = �𝝓𝝓𝒓𝒓𝑞𝑞𝑃𝑃(𝑡𝑡)
𝑁𝑁

𝑃𝑃=1

= 𝚽𝚽𝚽𝚽(𝑡𝑡)                                          (21) 

where, 𝝓𝝓𝒓𝒓  and 𝚽𝚽(𝑡𝑡)  are respectively the natural mode 
shape and generalized coordinate vectors. 

Substituting Eq. (21) into Eq. (20) and pre-multiplying by 
𝝓𝝓𝒊𝒊
𝑻𝑻 give the following. 

𝑀𝑀𝑖𝑖�̈�𝑞𝑖𝑖(𝑡𝑡) + 𝐾𝐾𝑖𝑖𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝑡𝑡)                                                 (22) 

where, 𝑀𝑀𝑖𝑖 = 𝝓𝝓𝒊𝒊
𝑻𝑻𝐌𝐌𝝓𝝓𝒊𝒊;   𝑲𝑲𝒊𝒊 = 𝝓𝝓𝒊𝒊

𝑻𝑻𝐊𝐊𝝓𝝓𝒊𝒊;   𝑓𝑓𝑖𝑖(𝑡𝑡) = 𝝓𝝓𝒊𝒊
𝑻𝑻𝐅𝐅(𝑡𝑡) 

Dividing by 𝑀𝑀𝑖𝑖  and adding the damping term 
2𝜉𝜉𝑖𝑖𝜔𝜔𝑖𝑖 �̇�𝑞𝑖𝑖(𝑡𝑡), Eq. (22) can be written as 

�̈�𝑞𝑖𝑖(𝑡𝑡) + 2𝜉𝜉𝑖𝑖𝜔𝜔𝑖𝑖�̇�𝑞𝑖𝑖(𝑡𝑡) + 𝜔𝜔𝑖𝑖
2𝑞𝑞𝑖𝑖(𝑡𝑡) =

𝑓𝑓𝑖𝑖(𝑡𝑡)
𝑀𝑀𝑖𝑖

                        (23) 

For simplicity, the first mode of vibration is only 
considered in this work. From (23), the first mode of 
vibration equation can be expressed as 

�̈�𝑞(𝑡𝑡) + 2𝜉𝜉𝜔𝜔�̇�𝑞(𝑡𝑡) + 𝜔𝜔2𝑞𝑞(𝑡𝑡) =
𝑓𝑓1(𝑡𝑡)
𝑀𝑀1

                                (24) 

5. Experimental Results and Discussion 

PID tracking control without feedforward hysteretic 

compensator  

In this approach, the relationship between moment of the 
piezoceramic actuator and the voltage is considered to be 
linear [9]. 

𝑀𝑀𝑃𝑃(𝑡𝑡) = 𝑐𝑐. 𝑣𝑣(𝑡𝑡)                                                                   (25) 

where, 𝑐𝑐 is the nominal (known) constant and dependent 
on material and geometrical properties of the beam. A 
discrete time PID controller can be expressed as follows 
[10]. 
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Figure 7 The diagram block for discrete time PID tracking control without considering hysteretic behavior 
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Figure 8 Arbitrary waveform displacement at the tip of 
the beam for discrete time PID tracking control without 

considering hysteretic behavior 

𝑣𝑣(𝑘𝑘) = 𝐾𝐾𝑃𝑃 �𝑃𝑃(𝑘𝑘) +
𝑇𝑇
𝑇𝑇𝐸𝐸
∑𝑃𝑃(𝑘𝑘)

+
𝑇𝑇𝐷𝐷
𝑇𝑇

[𝑃𝑃(𝑘𝑘) − 𝑃𝑃(𝑘𝑘 − 1)]�                (26) 

The diagram block for discrete time PID tracking control 
without considering hysteretic behavior is shown in 
Figure 7.  

Figure 8 and Figure 9 show the tracking control response 
and tracking error curves respectively with an arbitrary 
desired displacement. The nonlinearity of piezoceramic 
actuator still limits the accuracy of PID controller. In 
theory, a linear controller cannot eliminate completely the 
error of a nonlinear system. The average error is 1.405 μm. 
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Figure 9 The error curve between desired and actual 
arbitrary waveform for discrete time PID tracking control 

without considering hysteretic behavior 

PID tracking control with feedforward hysteretic 
compensator 

In this control approach, the nonlinearity, hysteresis, is 
compensated separately. PID controller is then used to 
control the compensated system. The block diagram for 
discrete time PID tracking control with feedforward 
hysteretic compensator is shown in Figure 10. Figure 11 
and Figure 12 show the tracking control response and 
tracking error curves respectively with an arbitrary 
waveform input signal. The average error is 0.649 𝜇𝜇𝑚𝑚. As 
expected, the closed-loop PID tracking controller with the 
feedforward hysteretic compensator shows the smaller 
tracking error compared to the previous case. 

 

 

Figure 10 The diagram block for discrete time PID tracking control with the feedforward hysteretic compensator 
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Figure 11 Arbitrary waveform displacement at the tip of 
the beam for discrete time PID tracking control with the 

feedforward hysteretic compensator 
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Figure 12 The error curve between desired and actual 
arbitrary waveform for discrete time PID tracking control 

with the feedforward hysteretic compensator 

6. Conclusion 

In this work, the position tracking control system of a 
flexible beam considering hysteresis behavior was 
conducted. In the system modeling, the flexible beam 
was modeled by finite element method and Preisach 
model was used for hysteretic compensator. To 
implement the Preisach model, a set of first-order 
hysteretic ascending curves was measured. Higher order 
ascending curves were predicted based on experimental 
data and its effectiveness was experimentally verified. In 
order to increase the accuracy of control system, a PID 
were used for feedback controller. For experiment, two 
control approaches were proposed and implemented. 
They are PID tracking control without hysteretic 
behavior and PID tracking control with the feedforward 
hysteretic compensator. It has been demonstrated through 
experimental implementation that PID tracking control 
with the feedforward hysteretic compensator has the 

better time and frequency tracking characteristics. It is 
finally remarked that in the near future the proposed 
control technique will be applied to more complicated 
systems such as position tracking control of dual servo 
stage system. 
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