HEC-HMS를 이용한 금호강 유역의 유출분석

Runoff Analysis of Kumho River Basin Using HEC-HMS

정찬용*, 임혁진*, 송인렬*, 이진원**, 정성원***

Chan Yong Jung, Hyuk Jin Lim, In Ryeol Song, Jin Won Lee, Sung Won Jung

...... 지 3

HEC-HMS(Hydrologic Modeling System)은 강우-유출 모의를 위한 차세대 소프트웨어이며 HEC-1에 포 함되어 있는 단위도 및 수문학적 홍수추적 이외에도 격자형 강우자료(레이더 데이터)를 이용하여 적용할 수 있는 유사분포 유출변화와 장기 연속모의에 적용할 수 있는 간단한 수분감소 등을 추가적으로 포함하고 있 다. 또한 GUI(Graphical User Interface)환경, 통합 수문분석 성분, 자료 저장 및 관리 능력, 그래픽 처리 및 리포트 출력기능으로 구성되어 있으며 여러 가지 프로그램 언어(C, C++, Fortran)를 이용하여 개발되었다.

본 연구에서는 낙동강 수계의 금호강에 위치한 동촌 지점을 유출구로 선정하고 5개의 소유역과 두 개의 하도로 구성하여 유출모의를 실시하였으며 수문자료 선정은 2007년~2008년에 발생한 홍수사상과 유량조사 사업단에서 개발한 수위-유량관계곡선식을 활용하였다. 또한, HEC-GeoHMS 모형을 GIS와 연계하여 지형인 자를 추출하고 추출된 지형인자를 이용하여 매개변수를 산정하였다. HEC-HMS 모형의 계산 조건에서 손실 우량은 SCS CN, 유출변환은 Clark 단위도법을 적용하였다. 또한 관측치와 계산치의 적합도 검증은 평균제곱 근오차(root mean squar error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였다

핵심용어 : HEC-HMS, HEC-GeoHMS, CN(curve number)값, 단위도법, 적합도 검증

1. 서 론

HEC-HMS(Hydrologic Modeling System, 1998)은 수문학적 모형으로 HEC-1 모형을 보완한 차세대 소 프트웨어이며 단위도 및 수문학적 홍수추적 이외의 유사분포 유출변화 및 장기 연속모의를 할 수 있다. 또한 GUI 환경, 통합 수문분석 성분 등 많은 기능을 구성하고 있어 실무에서 많이 활용되고 있다.

국내에서는 2000년대부터 GIS를 이용한 유출해석 및 개발에 대한 연구가 활발히 진행되고 있다. 김형수 등(2000)은 설계홍수량 산정, 안상진 등(2000)은 금강유역의 유출해석에 적용하였다. 이후 안상진 등(2001), 김주훈 등(2002), 우기정 등(2002)은 GIS와 HEC-GeoHMS를 연계하여 지형인자를 추출하고 추출된 지형인자 를 매개변수로 변환하여 HEC-HMS 모형에 적용하였다.

본 연구에서는 GIS와 HEC-GeoHMS를 이용하여 유출분석에 필요한 지형인자를 추출하고 이 매개변수를 HEC-HMS 모형의 매개변수로 입력하여 낙동강 수계의 금호강에 위치한 동촌 지점의 유출분석과 모형의 적 합성을 검증하였다. 또한 소유역별 CN 값을 최적화하여 2007년~2008년에 발생한 4개의 홍수사상에 적용하 여 매개변수의 적절성 여부를 검증하였다. 또한, 관측치와 계산치의 적합도 검증은 평균제곱근오차(root mean square error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였다.

2. 모형의 개요

^{*} 유량조사사업단 유량조사실 연구원·E-mail: cyjung@kict.re.kr, hyukjin@kict.re.kr, songir@kict.re.kr ** 유량조사사업단 유량조사실 실장·E-mail: jwlee@kict.re.kr *** 유량조사사업단 단장·E-mail: swjung@kict.re.kr

2.1 HEC-HMS(Hydrologic Modeling System) 모형

HEC-HMS 모형은 강우-유출을 해석하는데 여러 가지 기능을 제공하고 있다. 초기 버전인 HEC-1 모형이 포함되어 있고 단위도 및 수문학적 홍수추적, 격자형 강우자료를 이용한 유사분포 유출변환과 장기 연속모의에 적용할 수 있는 수분감소 등을 포함하고 있다. 또한 GUI 환경, 통합 수문분석 성분, 자료 저장 및 관리 능력, 그래픽 처리, 리포트 출력 등으로 구성되고 다양한 매개변수에 대한 최적화 기능이 포함되어 있다. HEC-HMS 내의 모든 계산은 SI 단위계로 구성되고 입력자료는 SI 단위계와 영국 단위계를 모두 사용할 수 있다.

HEC-HMS를 적용하는 단계를 간략하게 나타내면 다음과 같다.

- ① 기존 프로젝트를 열거나 또는 새로운 프로젝트를 시작한다.
- ② Basin Model을 열고 관련 데이터를 입력한다.
- ③ Precipitation Model을 열고 관련 데이터를 입력한다.
- ④ Control Specifications를 열고 관련 데이터를 입력한다.
- ⑤ 실행의 조합을 구성한 후 실행한다.
- ⑥ 결과를 고찰한다.
- ⑦ 프로젝트를 저장하고 종료한다.

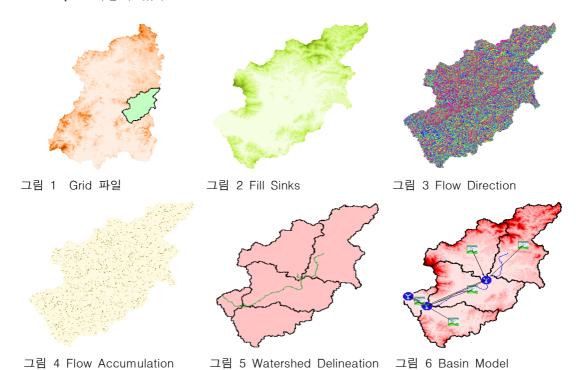
HEC-HMS에서 사용자가 선택할 수 있는 조건은 5가지로 소유역(subbasin) 항목에서 손실(losses), 변환 (transform), 기저유량(base flow)과 하도구간에서 홍수추적, 강우자료의 입력으로 크게 나눌 수 있다. HEC-HMS의 계산조건은 표 1과 같으며 본 연구에서는 SCS CN, Clark 단위도, Specify gage weights를 적용하여 유역에서 가장 적합한 매개변수를 선정하여 적용하였다.

표 1 HEC-HMS 모형의 계산과정

소 시	·Initial and constant	·Deficit and constant		
손 실 (losses)	Green and Ampt	·SCS Curve No.		
(103303)	·Gridded Curve No.			
H 최	·ModClark	·Kinematic wave		
변 환 (transform)	·Clark unit hydrograph	·Snyder unit hydrograph		
(transform)	·SCS dimensionless unit hydrograph	·User specified unit hydrograph		
기저유량	·Exponential recession	·Constant monthly		
(base flow)	Exponential recession			
추 적	·Lag	·Muskingum		
(routing)	·Modified Puls	·Muskingum Cunge(std shape, 8point)		
(foutilig)	·Kinemetic wave			
강 수	·Grid-based precipitation	·Import hyetograph		
(precipitation)	·Specify gage weights	·Inverse-distance gage weighing		
(precipitation)	·Frequency-based design storm			

2.2 HEC-GeoHMS 모형

HEC-GeoHMS는 유역의 지형특성인자와 수문학적 인자를 추출하여 HEC-HMS 모형의 입력변수를 제공하기 위해 개발된 모형으로서 자료관리와 GUI를 포함하고 있다. 표 2는 HEC-GeoHMS 모형에서 지형인자를 추출하는 과정을 나타낸다.


표 2. HEC-GeoHMS 모형의 지형인자 추출 과정

Data Processing	·Data Collection	·Data Assembly
	·Fill Sinks	·Flow Direction
Terrain Preprocessing	·Flow Accumulation	·Stream Definition
	·Watershed Delineation	·Watershed Aggregation
Hydrogic Processing	·Basin Processing	·HMS Model Fils
Trydrogic Trocessing	Stream and Watershed C	Characteristics
Hydrologic Parameters and HEC-HMS	·Basin Processing	·Basin Characteristics

3. 지형특성인자 추출

3.1 GIS와 HEC-GeoHMS를 연계한 입력자료 추출 과정

본 연구의 대상유역인 낙동강 유역의 DEM 자료를 기존의 DXF file 형식으로 구축된 Grid file을 호환이 가능한 ASCII file로 Export 시킨 후 GIS에서 Import하는 방식을 취하였다. 그림 1~그림 6은 DEM 자료를 GIS에서 Grid 파일로 변환하고 동촌 수위관측소를 최하류의 유출구로 한 하천망과 유역경계, 소유역 분할을 나타낸다. 그림 7은 HEC-GeoHMS로부터 만들어진 Background-Map File로 HEC-HMS 모형에서 Basin module로 Import 시킬 수 있다.

3.2 지형특성인자 추출

본 연구에서는 GIS와 HEC-GeoHMS 모형을 연계하여 5개의 소유역으로 분할하여 각 소유역마다 지형특성인자들을 추출하였으며, 여기서 추출된 지형특성인자들을 이용하여 강우-유출 모형인 HEC-HMS 모형의 매개변수 산정에 활용하여 유출모의를 하였다(표 3 참조).

표 3. 소유역별 지형특성인자

구 분	유역면적	하도길이	하상경사	
유역	A(km²)	L(km)	(m/m)	
Sub-1	343.72	39.33	0.026	
Sub-2	451.57	55.77	0.012	
Sub-3	412.08	50.74	0.011	
Sub-4	69.53	18.48	0.032	
Sub-5	284.19	35.34	0.014	

3.3 소유역에 대한 불투수층과 티센 가중치 산정

동촌 수위관측소를 유출구로 유역은 5개 소유역에 분할되고 각 소유역은 국토해양부와 기상청(영천)에서 관할하는 강우관측소가 구축되어 있다. HEC-HMS 모형에서 SCS CN의 손실에 입력되는 불투수층 산정은 그림 8과 같이 토지이용도를 활용하였고 티센망 구축과 강우자료 입력에 필요한 티센계수는 그림 7과 표 4로 나타냈다.

표 4 소유역별 티센계수

Basin	신령	화북2	죽장	고경	영천
sub-1	0.450	0.334			0.185
sub-2		0.171	0.345	0.359	0.125
sub-3	0.128			0.021	0.182
sub-4					
sub-5					
Basin	금호	동촌	자인	계	
Basin sub-1	금호 0.031	동촌	자인	계 1.000	
	1	동촌	자인	月 1.000 1.000	
sub-1	1	동촌 0.041	자인 0.131	계 1.000 1.000 1.000	
sub-1 sub-2	0.031	동촌 0.041 1.000	자인 0.131	月 1.000 1.000 1.000 1.000	

그림 7 티센망 구축

3.4 매개변수 산정

HEC-HMS 모형의 매개변수 산정은 HEC-GeoHMS 모형에서 추출한 지형인자를 이용하여 표 5와 같이 나타냈다. SCS CN 값은 유역조사보고서(건설교통부, 2004)에 제시된 CN 값을 적용하였으며 불투수층은 토 양도와 토지이용도를 참조하여 산정하였다. 여러 공식 중에 금호강 유역에 적합한 매개변수 산정은 식 1과 같고 기저유출 분리는 HEC-HMS의 지수함수적 감소 방법에서 첨두유량비 0.05~0.15, Recession Constant $0.1^{-}0.9$ 범위를 선정하여 적용하였다. 또한 R(저류상수)은 일반적으로 우리나라에서 많이 사용하는 $R=0.8^{-}$ 1.2 · Tc 범위내에서 R=1.0 · Tc를 사용하였고 하도추적 매개변수는 상류에 위치한 금호 지점의 유출수문곡선 과 비교하여 하도1 La=0.5hr, 하도2 La=1.5hr으로 설정하였다.

·정성원 공식(공업수문학, 청문각)

표 5 소유역별 매개변수 산정

	Losses			Transform			Base flow		
Basin	SCS Cui	rve No.	Impervious	Clark, Tc	Clark,R	정성원, R	Initial, Q	Threshold, Q	Recession
	constant	Opt. ③	(%)	(hr)	1	2	(m³/s)	(ratio to peak)	Constant
sub-1	75	63.7	0.2	4.57	4.57	6.19	3.5	0.1	0.5
sub-2	75	83.1	0.4	8.05	8.05	7.45	4.6	0.1	0.5
sub-3	75	69.0	1.5	7.73	7.73	7.34	4.2	0.1	0.5
sub-4	75	64.2	18.2	2.36	2.36	4.95	0.7	0.1	0.5
sub-5	75	61.1	2.6	5.34	5.34	6.48	2.9	0.1	0.5

4. 모형의 적용

4.1 대상유역 및 홍수사상

본 연구에서는 낙동강 수계의 금호강에 위치한 동촌 수위관측소를 대상으로 모형을 적용하였으며 동촌 지점의 2007년 ~ 2008년 수위-유량관계곡선식에 적용한 환산유량과 비교하여 매개변수의 적절성 여부를 판단 하였다. 홍수사상은 2007년 3개, 2008년 1개, 총 4개의 홍수사상을 선정하여 유출모의를 실시하였다(표 6 참 조).

4.2 모형의 적합도 검정

모형의 적합도를 검정하기 위하여 평균제곱근오차(RMSE)와 모형효율성계수(ME)를 산정하였다.

표 6 첨두홍수량 비교

유역	평균강우량(mm)		홍수사상				
π =	でせる下で(IIII)	Observed	HEC-HMS ①	HEC-HMS ②	HEC-HMS ③	る十个で	
	93.8	755.11	1,042.10	1,012.60	822.08	2007. 8. 7	
동촌	273.6	1,679.80	1,762.20	1,730.00	1,561.90	2007. 8. 28	
	124.2	1,758.80	1,440.50	1,381.90	1,189.50	2007. 9. 14	
	119.8	832.07	1,212.10	1,198.10	991.10	2008. 8. 15	

표 7 모형의 적합도 검정

	Clark unit hydrograph						
유역	HEC-HMS ①		HEC-F	HMS 2	HEC-HMS ③		홍수사상
	RMSE	ME	RMSE	ME	RMSE	ME	
	112.953	0.689	102.805	0.743	87.081	0.815	2007. 8. 7
동촌	372.018	0.180	349.467	0.277	311.372	0.426	2007. 8. 28
중근	160.846	0.824	151.382	0.844	178.083	0.784	2007. 9. 14
	164.998	0.463	152.380	0.542	81.725	0.868	2008. 8. 15

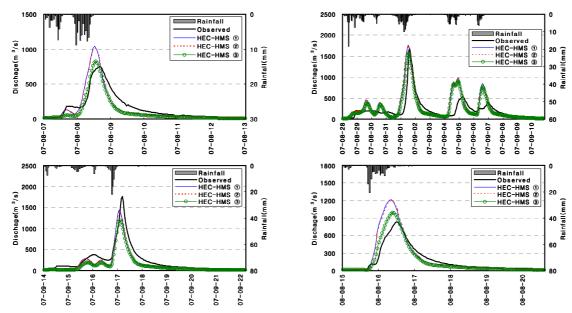


그림 9 동촌 지점의 유출수문곡선 모의 결과

5. 결 론

본 연구에서는 낙동강 수계의 금호강에 위치한 동촌 지점을 유출구로 선정하고 GIS와 HEC-GeoHMS를 연계하여 지형특성인자를 추출하였다. 추출된 지형특성인자의 매개변수 결정은 시행착오법으로 가장 적합한 결과를 보인 SCS CN, Clark 단위도법 선택하여 HEC-HMS 모형의 매개변수에 적용하였다. 적용 결과, ① CN값을 최적화한 HEC-HMS ③의 결과가 관측치와 비슷한 결과를 나타냈고 ②첨두유량이 약 900㎡/s 이하에서 유출수문곡선의 상승이 다소 느리게 증가하는 현상으로 하도통제의 영향과 작은 강우강도로 강우지속기간이 길어져 오차가 크게 나타난 것으로 판단된다. ③단순 홍수사상에 비해 복합 홍수사상이 낮은 적합도를 나타냈다. 적은 수문자료와 단순한 제약조건으로 동촌 지점의 매개변수의 적절성 여부를 판단하기에는 다소 무리가 있으나 첨두유량의 예측은 최적화된 CN 값을 적용하여 큰 무리는 없을 것으로 판단된다. 향후충분한 수문자료가 확보되고 집중형과 분포형 모형을 연계하여 자연하도에 가까운 조건을 추가한다면 좀더신뢰도 높은 매개변수와 유출모의가 될 것으로 판단된다.

6. 참고문헌

김주훈 등(2002), HEC-GeoHMS 및 HEC-HMS를 이용한 유출분석, 한국수자원학회 학술발표회논문집Ⅱ, pp.867~872, 2002. 5

- 김형수(2004), HEC-HMS의 이론과 실무 적용, 한국수자원학회 2004년도 제 13회 수공학 웍샵교재, pp.1~204, 2004. 11
- 안상진 등(2000), HEC-HMS 모형을 이용한 금강유역의 홍수수문곡선 해석, 한국수자원학회 학술발표회논문 집, pp.89~94, 2000. 5
- 우기정 등(2002), GIS와 HEC-HMS 결합에 의한 탐진강 유역의 홍수유출 해석, 한국수자원학회 학술발표회 논문집Ⅱ, pp.1280~1285, 2002. 5