염화아연욕에서 염화물이 전기아연도금에 미치는 영향

Effect of chloride to electroplating of zinc in chloride Bath

김재민 ${ }^{1^{*}}$, 이정훈 ${ }^{1}$, 김용환 ${ }^{1}$, 정원섭 ${ }^{1}$

(1) 부산대학교 재료공학과

초 록 : 염화물이 전기아연도금에 미치는 영향을 분석해본 결과 염화물의 양이 부족한 경우에는 도금이 원활하 지 않았지만 교반속도를 충분히 주면 도금이 가능하였고, 염화칼륨의 양에 따라서 우선성장하는 면이 달랐으며 가격이 비싼 염화칼륨을 염화나트륨으로 대체 가능성이 확인되었다.

1.서론

전기아연도금은 은백색의 미려한 표면을 얻을 수 있을 뿐만 아니라 도금 부착량 조절이 용이하여 자동차용 강 판이나 가전제품 외장 등에 보편적으로 적용되고 있는 대표적 표면처리 방법 중 하나이다. 전기아연도금시 염 화아연을 주성분으로 하여 다량의 염화칼륨을 포함하는 도금욕이 상용 공정에서 널리 사용되고 있으나, 최근 염화칼륨의 지속적인 가격 상승 등으로 인한 문제점이 부각되고 있다. 따라서 본 연구에서는 염화물욕에서 전 기아연도금시 염화물의 양이 미치는 영향을 연구하는 한편 염화나트륨의 기존 염화칼륨 대체 가능성을 조사하 였다.

2. 본론

2.1 도금피막 제조방법

본 연구에서 사용한 도금용 소재는 KSD 3512(SCP-1) 냉간압연강판을 사용하였고 이것을 탈지와 산세 처리후 에 90 ASD 의 전류밀도 조건으로 회전식 교반 셀에서 전기도금을 하였다. 도금조건은 KCl 의 첨가량, NaCl 의 첨 가량, 교반속도, 온도를 변화시켰고 도금부착량은 $20 \mathrm{~g} / \mathrm{m}^{2}$ 으로 고정시켰다.

2.2 도금 표면 분석

도금층의 표면조직은 SEM으로 관찰하였고 우선배향성은 XRD와 Pole-figure를 사용하여 분석하였으며 분극시 험은 Potentiostat를 사용하여 분석을 실시하여 평가하였다.

Fig1. Morphology of surface

3.결론

염화칼륨의 농도가 낮은경우에는 교반속도가 증가해야 원활한 도금이 가능하다. 염화칼륨의 양이 충분한경우 기저면이 우선성장하지만 염화칼륨의 양이 줄어들수록 피라미달 면이 우선성장하였다. 그리고 가격이 비싼 염 화칼륨을 염화나트륨으로 대체 가능성이 확인되었다. 하지만 염화나트륨의 양이 많으면 오히려 도금이 원활히 되지 않는다. 분극시험을 통해 염화칼륨의 양이 많은것이 염화나트륨이 첨가된것보다 인가된 전류의 크기에 따 른 분극의 크기가 큰것을 알수있다.

참고문헌

1. P.R. Sere and J.D. Culcas., Surface \& Coating Tech, 122 (1999).
2. Sung Sik Jung, Byung Il Kim and Young Geun Kim., J. Kor. Inst. Met \& Meter 42, 7 (2004).
3. Y. G. Kim, M. S. Kim., Journal of the Korean institute of surface Engineering 33, 5 (2000).
