Bipolar pulsed DC magnetron sputtering에서 정적 증착과 동적 증착에 의한 박막 특성 변화

Thin film characteristics variation of static deposition and dynamic deposition by bipolar pulsed DC magnetron sputtering

양원균^, 주정훈

^군산대학교 신소재공학과(E-mail:wkyang@kunsan.ac.kr), 플라즈마 소재응용 센터 (PMRC)

초 록: 실제 산업에서 가장 많이 사용하고 있는 in-line type system에서 Al-doped ZnO (AZO) 막을 bipolar pulsed DC sputtering을 이용해 증착하였다. 약 30 mm/sec의 속도로 기판을 타겟 좌우로 swing 하면서 동적 증착 공정을 한 AZO 박막의 columnar structure가 정적 증착일 때와 다른 형태의 zigzag-type columnar structure가 형성되었다. 투명전도막의 가장 중요한 특성인 비저항과 투과도가 동적 증착 공정일 때의 박막과 정적 증착 공정일 때의 박막이 각각 $2.5 \times 10^3~\Omega\cdot\text{cm}$, 78.5%와 $1.65 \times 10^3~\Omega\cdot\text{cm}$, 83.9% 였다. 이렇게 성장하는 막의 구조 형태에 따라 달라지는 특성 변화는 양산하는 현장에서 매우 중요할 것이며, 동적 증착 공정에서의 박막 특성 개선에 정적 증착 공정과는 다른 방법의 연구가 필요할 것이다.

1.서론

투명 전도막은 가시광선 영역에서 갖는 우수한 투과율과 낮은 비저항을 갖는 특성 때문에 태양전지 (Solar cell), 평판 표시장치 (Flat Panel Display), OLED (Organic Light Emitting Diode) 등의 광전자 기기에 널리 사용되고 있다^[1]. 최근에는, 고갈위기에 놓인 ITO (Indium Tin Oxide)를 대신하여 Al이 도핑된 ZnO 연구가 많은 연구자들에 의하여 진행 중이다^[2]. 증착방법에는 PECVD, sputtering 등 많은 방법들이 사용되고 있으며, 그 중 sputtering법에서도 전원 장치 및 주파수 별로 많은 연구가 진행 중에 있다. 또한, 양산을 하는 현장에서는 정적 (static) 증착이 아닌 in-line type의 챔버에서 동적 (dynamic) 증착이 이뤄지고 있으며, 위의 많은 조건에 의해서 서로 다른 특성을 갖는 결과를 얻기도 한다.

서로 다른 특성을 갖는 결과를 얻기도 한다. 본 연구에서는 in-line type 시스템에서 bipolar pulsed DC sputtering^[3]의 동적 증착법으로 AZO 박막을 증착하였으며, 이 때 정적 증착법으로 증착된 박막이 동적 증착법에 의해 증

으며, 이 때 정적 중작법으로 중작된 막막이 공적 중작법에 의해 중 착된 박막과 어떠한 특성 변화를 나타내는지에 대해서 조사하였다.

2.본론

본 연구에서는 bipolar pulsed DC sputtering을 이용하여 대면적 증착을 위해 125 x 625 mm 타켓 앞에서 기판이 좌우로 swing하는 dynamic 증착을 시도하였다. Sputtering power 2-kW, 펄스 주파수는 150 kHz, duty 60%에서 swing 속도 30 mm/sec로 기판이움직일 때, 그림 1과 같은 zigzag-type의 columnar structure의 형태로 박막이 형성되었다. 이렇게 증착된 박막의 비저항이 static deposition에서 증착된 straight columnar structure 보다 낮은 비저항을 보였다. 또한, 투과도도 static으로 증착했을 때의 박막은 83.9%로 우수한 투과율을 가졌지만, dynamic 증착으로 했을 때는 78.5%까지 낮아졌다. 성장하는 구조 형태가 비저항과 투과도에 어떻게 영향을 주는지 지속적인 연구가 필요할 것으로 보인다. 실제현장의 양산 장비에서는 in-line type으로 straight columnar structure가 될 수 없기 때문이다.

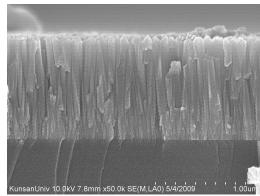


Fig. 1. The zigzagged columnar structure by dynamic deposition process.

3.결론

실제 양산에서 사용되고 있는 In-line type 시스템에서 bipolar pulsed DC magnetron sputtering 방법으로 기판이 swing하는 동적 증착을 한 AZO 박막은 FESEM을 통해 zigzag-type columnar structure를 형성하는 것을 확인했으며, $2.5 \times 10^3~\Omega$ ·cm의 비저항과 78.5%의 투과율을 보였다. 반대로 정적 증착법으로 증착한 막은 $1.65 \times 10^3~\Omega$ ·cm의 비저항과 83.8%의 투과율로 동적 증착에 의한 박막 보다 우수한 특성을 보였다. 양산 공정에서는 정적 증착이 아니라 동적 증착이기 때문에 박막 특성을 개선하는데 추가의 연구가 필요할 것으로 보인다.

참고문헌

- 1. M. Katayama, Thin Solid Films. 341 (1999) 140.
- 2. T. Minami, Semicon. Sci. Technol. 20 (2005) S3.
- 3. P. J. Kelly and R. D. Arnell, Vacuum 56 (2000) 15.