하중조건에 따른 섬유를 혼입한 고강도콘크리트의 내화특성 (2보 변형특성을 중심으로)

Fire Properties of Polypropylene Fiber Reinforced High-Strength Concrete with Pre-loading level (Part 2 Strain properties)

이 태 규' 김 영 선' 이 형 준' 김 우 재" 가와바타 이치조" 김 규 용" Lee, Tae Gyu Kim, Young Sun Lee, Hyung Jun Kim, Woo Jae Kawabata, Ichizo Kim, Gyu Yong

ABSTRACT

By using the experiment, it can analyze the result about strain properties of the concrete when the concrete takes a various Pre-loading level and high temperature.

요 약

본 연구는 다양한 재하조건을 고려한 섬유혼입 콘크리트의 화재시험을 통하여 콘크리트구조물의 거 동예측을 위한 변형특성을 평가하는데 목적이 있다.

1. 서 론

화재시 콘크리트의 성능저하는 온도에 의한 하중, 폭렬, 열팽창 및 크리프 등과 같은 여러 가지 요인에 대하여 영향을 받을 수 있으며, 상시 재하하중이 존재하므로 이에 대한 고려도 필요하다.

본 연구에서는 화재시 콘크리트의 내화성능평가의 일환으로 다양한 재하조건을 고려한 섬유혼입 콘크리트의 변형특성을 평가하였다.

2. 실험계획 및 방법

본연구의 실험계획 및 배합은 표 1에 나타낸 바와 같이 설계기준강도 27, 40, 60MPa를 만족시키기 위하여 55, 42, 35%로 설정하였으며, 섬유혼입률을 0~0.2vol%의 범위로 혼입하였다. 가열·재하실험을 위한 장치는 Ø100×200mm의 표준공시체를 전용으로 사용할수 있는 장치로써 하중조건에 따른 재하 및 가열을 동시에 고려하여 실험을 실시할 수 있는 장치를 사용하였다.¹⁾

3. 실험결과 및 고찰

재하수준에 따른 열팽창변형은 그림 1에 나타낸 바와 같이 하중이 증가할수록 팽창(+)에서 수축(-)으로 전이되는 것으로 나타났으며, 섬유혼입률에 따라서는 유사한 수준을 나타내었다. 표 2는 재하수준에 따른 가열시험후 변형특성을 나타낸 것으로 잔존탄성계수비는 전반적으로 섬유

^{*} 정회원, 정회원, 충남대학교, 건설재료·시공학연구실, 대학원생

^{**} 정회원, (주)포스코건설, 건축사업본부, 고문

^{***} 정회원, (주)포스코건설,

^{****} 정회원, 충남대학교, 건축학부, 조교수

표 1.실험계획 및 콘크리트 배합

시험체 기 호	W/C (%)	하중 조건 (fc%)	Slump -flow (mm)	Air (%)	S/a (%)	F 종류	iber 혼입율 (%)	단위 수량 (kg/m³)	단 위 C	의 중 i S	량(kg G	/m³) F	측정항목	
27M-0 ¹⁾	55	0 20 40	180±20	4±2	45		0, 0.05	175	318	781	996	0	· 탄성계수	
40M-0	42		450±50				0	170	405	756	964	0		
60M-0	35							0.05. 0.1	165	471	760	969	0	• 최대응력변형

1) 27M-0 : 설계기준강도 27MPa-PP섬유혼입률 0%

그림 1.재하수준에 따른 열팽창변형

표 2. 재하수준에 따른 가열시험후 변형특성

ĺ		PP	Cor	npress	Elastic			Strain at			
١	시험체	fibers	S	trengt	modulus			peak stress			
ı	기호			(MPa)	(E/Ec)			(%)			
		(Vol.%)	0%	20%	40%	0%	20%	40%	0%	20%	40%
I	27M-0	0	7.91	8.09	4.47	0.04	0.05	0.04	1.04	0.67	0.52
I	27M-0.05	0.05	6.65	12.97	f	0.03	0.07	f	0.94	0.65	f
I	27M-0.1	0.1	8.34	15.18	f	0.04	0.08	f	0.9	0.72	f
I	40M-0	0	S	S	S	S	S	S	S	S	S
ı	40M-0.05	0.05	13.28	20.82	f, s	0.06	0.11	f, s	0.82	0.59	f, s
ı	40M-0.1	0.1	15.18	23.86	23.89	0.07	0.11	0.12	0.84	0.65	0.58
ı	40M-0.15	0.15	17.33	23.2	f	0.06	0.09	f	0.9	0.61	f
I	40M-0.2	0.2	14.75	21.13	f	0.06	0.08	f	0.74	0.65	f
١	60M-0	0	S	S	f	s	s	f	S	S	f
ı	60M-0.05	0.05	17.76	25.29	f	0.07	0.11	f	0.85	0.61	f
ı	60M-0.1	0.1	22.02	26.26	f	0.11	0.12	f	0.71	0.61	f
I	60M-0.15	0.15	17.63	26.44	f	0.08	0.12	f	0.76	0.64	f
Į	60M-0.2	0.2	19.23	24.87	f	0.08	0.10	f	0.82	0.62	f

f: failure s: explosive spalling

유혼입시 낮게 나타났으며 재하수준 20%에서 10%정도의 잔존률을 나타내었다. 최대응력에서의 변형은 하중수준이 증가할수록 낮은 변형률을 나타내고 있으나 비가열시험체에 비하여 2배 이상인 0.6%정도를 나타내었다. 또한 변형이 낮을수록 압축강도가 증대되는 상관관계를 나타내고 있어 내화성능 평가시 재하조건 또한 중요한 요인임을 확인할 수 있었다.

4. 결 론

재하수준에 따른 열팽창변형은 하중수준 20~40%의 범위에서 제어가 되는 것으로 나타났으며 섬 유혼입에 따른 영향은 적은 것으로 나타났다. 또한 변형의 제어는 압축강도의 상승에 영향을 미치 는 것으로 나타나 이에 대한 고려가 필요하다.

감사의 글

이 논문은 2007년도 정부재원(교육인적자원부 학술연구조성사업비)으로 한국학술진흥재단의 지원 (KRF-2007-314-D00271)과 (주)포스코건설 R&D기술연구소의 연구비 지원에 의해 수행되었습니다. 이에 감사드립니다. 논문에 참여한 연구자(의 일부)는 2단계 BK21 사업의 지원비를 받았음.

참고문헌

1. 김영선, 이태규, 이대희, 이승훈, 김규용, 김무한, 콘크리트의 고온특성 평가를 위한 열전달가열 시험방법에 관한 기초적연구, 한국콘크리트학회 봄학술발표회논문집, Vol.20 No.1, 2008, pp. 761~764