TF-P023

Electronic and Optical Properties of amorphous and crystalline Zirconium Oxide Thin Films on Si (100)

<u>Dahlang Tahir¹</u>, Hyuk Lan Kwon¹, Kyeom Ryong Kim¹, Eun Hye Choi¹, Lee Seul Son¹, Suhk Kun Oh¹, and Hee Jae Kang¹, Dong Seok Yang², Sung Heo³, Lee Eun Ha³, Jae Gwan Chung³ and Jae Cheol Lee³

¹Department of Physics, Chungbuk National University, Cheongju, 361-763, Korea ²Physics Division, School of Science Education, Chungbuk National University, Cheongju, 361-763, Korea ³Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwun, 440-600, Korea

 ZrO_2 thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and mobility degradation in achieving a thin equivalent oxide thickness.

The atomic structure of amorphous and crystalline zirconium oxide (ZrO_2) gate dielectrics thin films grown on Si (100) by mean of atomic layer deposition method was examined by using *Zr-K* edge X-ray absorption spectroscopy. EXAFS spectra show the ordered bonding of Zr–Zr for c-ZrO₂, but not for a-ZrO₂ thin film.

The electronic and optical properties were obtained by using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy (REELS). The band gap of ZrO₂ thin films was 3.50 ± 0.1 eV, which does not depend on atomic structure. The optical properties of ZrO₂ thin films were obtained from the experimental inelastic scattering cross section of REELS spectra. The optical properties, represented by the index of refraction (*n*), extinction coefficient (*k*) and dielectric function (ε), were obtained from REELS spectra by using QUEELS- $\varepsilon(k, \omega)$ -REELS software package. The energy- dependent behaviors of reflection, absorption or transparency in ZrO₂ thin films were also determined from the optical properties. The difference between amorphous and crystalline ZrO₂thin films in optical property could not be observed.

Keywords: REELS; optical properties, EXAFS, and XPS