TF-P040

Carrier dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates

이송매¹, 권봉준¹, 곽호상¹, 김려화¹, 조용훈¹, 박영신², 한명수³, 박영식³

¹Department of Physics and Graduate School of Nanoscience & Technology (WCU), Korea Advanced Institute of Science and Technology (KAIST), Daejeon
²Quantum Functional Semiconductor Research Center, Dongguk University, Seoul
³Micro-Optics Team, Korea Photonics Technology Institute, Gwangju

ZnO-based semiconductor and quantum structures have recently attracted much attention due to their potential applications, such as lighting emitting devices owing to their large binding energy of excitons. However, localization, relaxation, and recombination mechanisms of exitons in these ZnO-based multiple quantum well (MQW) structures are not fully understand. In this work, we report on temperature dependence of excitonic transitions in ZnO/Zn_{0.9}Mg_{0.1}O MQW structures grown on ZnO substrates. Two kinds of MQWs having different well thicknesses grown by molecular-beam epitaxy showed significantly different temperature dependences of photoluminescence (PL) spectra. For the MQWs with a well thickness of 2 nm, the peak energy at 50-200 K was a monotonically increasing function of temperature, and the PL spectra taken at 90-200 K showed two emission peaks. The temperature-induced shift at 10-300 K can be explained by the inhomogeneity and the exciton localization effect. On the other hand, the temperature dependence of PL in the MQWs with a well thickness of 5 nm was similar to that typically observed in bulk II-VI semiconductors, that is, PL peak energy was redshifted due to bandgap shrinkage with increasing temperature. Carrier dynamics related to these phenomena in ZnO/ZnMgO MQW structures will be discussed.