TF-P070

The study of post annealing effects on low dielectric constant SiOC films.

S.H. Park¹, H.J. Kim¹, M.-H. Cho^{1*}, J.H. Hahn², D.-H. Lee³, Y.S. Kwon³, S.-Y. Park³, M.-S. Kim⁴

¹Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea

²Division of Industrial Metrology, KRISS, Daejeon, 305-340, Republic of Korea

³R & D Center, ATTO. CO. LTD., Gyounggido, Republic of Korea

⁴Air Products and Chemicals, Inc, Seoul, 110-702, Republic of Korea

We studied about the post annealing effects of electrical, mechanical, and chemical properties on low- κ SiOC films deposited by plasma-enhanced chemical vapor deposition. For the memory applications, it has some advantages that the precursor has Si-OCHxCHy side chains sustaining harder films than previously reported low- κ materials. The dielectric constant (κ -value) of the as-grown film was measured about 2.45 by MOS CV measurement at 100 kHz. In order to investigate the changes of properties in this film, we use a rapid thermal annealing (RTA) process in N₂ ambient at temperature range between 250 and 600 °C for 5 min. The chemical structures of annealed films were studied by reflection mode Fourier transform infrared (FTIR) spectroscopy. For the annealing temperature up to 500 °C, the κ -value has gradually decreased to 2.24 because of the formation of Si-O cage structure while the films maintained its mechanical properties such as hardness and modulus. For the film treated by RTA at 600 °C, the CHx groups of the film were released and Si-O network enhanced. Thus the film has κ -value of 4 and hardness of 4.5 GPa similar to the properties of silicon dioxide. In conclusion, the post annealing treatment on SiOC film has decreased the κ value about 8 %, while, for higher annealing temperature over 600 °C, the properties have hanged similar to the silicon dioxide film.

* E-mail: mh.cho@yonsei.ac.kr