TF-P074

Highly selective etching of silicon nitride to CVD a-C in dual-frequency capacitively coupled CH₂F₂/H₂plasmas

김진성¹, 권봉수¹, 안정호¹, 박영록¹, 정창룡¹, 허욱¹, 박지수¹, 이내응¹, 손종원²

¹성균관대학교 신소재공학부, ²주성엔지니어링(주)

For the fabrication of a multi level resist (MLR) based on amorphous carbon (a-C) layer and Si_3N_4 hard-mask layer etch selectivity of the Si_3N_4/a -C layer becomes increasingly critical with the feature size reduction. In this work, the highly selective etching process of the Si_3N_4 layer(\cong 300 nm), using chemical-vapor-deposited (CVD) a-C etch-mask (\cong 300 nm), was investigated by varying the following process parameters in CH₂F₂/H₂/Ar plasma: etch gas flow ratio, high-frequency source power(P_{LF}) and low-frequency source power(P_{LF}) in a dual-frequency superimposed capacitively coupled plasma etcher. It was found that infinitely high etch selectivities of the Si_3N_4 layers to the CVD a-C on patterned wafers could be obtained for certain process conditions. In particular, the etch gas flow ratio was found to play a critical role in determining the process window for infinite Si_3N_4 /CVD a-C etch selectivity. The etch results of patterned ArF PR/BARC (bottom anti-reflective coating)/SiOx/CVD a-C/Si₃N₄ MLR structure supported the possibility of using a infinitely high selective etch processes of the Si_3N_4 layer to the CVD a-C layer will be discussed in detail.