TF-P106

Phase separation of In doped SbTe films

장문형¹, 박숭종¹, 임동혁¹, 박성진¹, 조만호¹, 도기훈², 고대홍², 손현철², 이연진³

¹연세대학교 물리 및 응용물리 사업단, ²연세대학교 재료공학부, ³한국표준과학연구원 첨단측정그룹

The In_{0.5}Sb₂Te_{2.9}, In_{2.6}Sb₂Te_{2.9} and Sb₂Te_{2.7} films were deposited by ion beam sputtering deposition to find out the effect of In. The sheet resistance of In_{2.6}Sb₂Te_{2.9} film did not change at 220 °C while the resistance of In_{0.5}Sb₂Te_{2.9} and Sb₂Te_{2.7} films was dropped abruptly at 170 °C. From x-ray diffraction, In₂Te₃, Sb and In₃SbTe₂ phases separated in the In_{2.6}Sb₂Te_{2.9} film with annealing above 270 °C. However, In_{0.5}Sb₂Te_{2.9} and Sb₂Te_{2.7} films showed only SbTe phase. In addition, x-ray photoelectron spectra of In_{2.6}Sb₂Te_{2.9} film showed low binding energy shift of Sb 3*d* and In 3*d* peaks after the annealing. This is due to the bond energy difference among the constituent atoms in the film. Moreover, the density of state near Fermi level decreased as In content increased. This is originated from In 5*p* valence state which has only one electron. The change of valence state affects to the electrical resistivity as shown in sheet resistance data. The atomic force microcopy images showed the enhancement of "nucleation-dominated" crystalline growth with In incorporation.