SF3-001

Confinement of Dirac fermions in graphene corral surrounded by steps

<u>Jin-Hee Han</u>¹, Hae-geun Jee², Han-Na Hwang², Hee-seob Kim², Bongsoo Kim^{1,2}, Young Dok Kim³, Chanyong Hwang⁴, and Chan-Cuk Hwang²*

¹Department of Physics, POSTECH, Pohang 790-784, Korea

²Beamline Research Division, Pohang accelerator Laboratory, POSTECH, Pohang 790-784, Korea

³Department of Chemistry, SungKyunKwan University, Suwon 440-746, Korea

⁴Division of Advanced Technology, Korea Research Institute of Standards and Science, POBox 102, Yuseong, Daejeon, Korea

We report a new way of confining Diran fermions in a local region surrounded by steps like fast horses in a corral. Dirac fermions were found to undergo backscattering from a series of steps and thus they can be confined within a small terrace. The band gap of graphene increases with decreasing confined terrace size due to the quantum confinement effect. These results demonstrate that surrounding steps can be used to confine Dirac fermions in graphene corral and engineer the energy gap, which will be a key technology in future nano-optoelectronics.