SF-P007

Structural phase Transition of Low-coverage Pentacene on SiO₂ and Au surfaces

임규욱¹, 이경재², 강태희¹, 정석민², 최무영³

¹포항가속기연구소 빔라인부, ²포항공대 물리학과, ³서울대학교 물리천문학부

Thermodynamic behaviors of low-coverage pentacene molecules on both silicon oxide (SiO₂) and gold (Au) surfaces have been observed via x-ray absorption spectroscopy. It reveals intriguing structural transitions with temperature: For the SiO₂ surface, monotonic decrease in the mean tilt angle of the pentacene layer is observed as the temperature is increased. For the Au surface, three different structural regimes are found, indicating double transitions. Such contrasting thermodynamic behaviors are explained in terms of a spin-1 Ising model, which includes three structural states: standing-up, lying-down, and desorbed.