SF-P018

Orbital Character of the Conduction Band of Delafossite PdCoO₂ Studied by Polarization-Dependent Soft X-Ray Absorption Spectroscopy

<u>Han-Jin Noh</u>¹, Jinwon Jeong¹, Jinhwan Jeong¹, Hojin Sung¹, Kyoung Ja Park¹, Jae-Young Kim², Hyeong-Do Kim², Sung Baek Kim³, Kyoo Kim³, B. I. Min³

¹전남대학교 물리학과, ²포항가속기연구소, ³포항공대 물리학과

We present the x-ray absorption spectra that show the Co valence state and the orbital character of the conduction band of delafossite PdCoO2. The Co 2p x-ray absorption spectra of PdCoO2 and PtCoO2 show that the Co ions have the trivalent low-spin configuration. The polarization dependent O 1s absorption spectra reveal that the unoccupied density of states (DOS) near the Fermi level consists mainly of the Pd 4d 3z2-r2 states. The experimental O 2pz partial DOS (PDOS) is extracted from the polarization dependent O 1s spectra and is compared with the theoretical PDOS by the local density approximation, showing a good agreement. These observations provide a consistent picture on the origin of the good conductivity of the delafossite oxides.