Study of SrTiO₃ for Dielectric Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

<u>임찬중</u>¹, 임동혁², 마진원², 조만호*², 권학용³, 박형상³, 유용민³, 고대홍¹

¹연세대학교 세라믹공학과, ²연세대학교 물리 및 응용물리학과, ³ASM Genetech Korea(주)

SrTiO₃ (STO) thin films as the capacitor dielectrics for the dynamic random access memory (DRAM) were deposited by plasma-enhanced atomic layer deposition (PE-ALD) method with alternating supply of reactant source, Ti(O-i-C₃H₇)₄ (TTIP) and Sr(BuCp)₂ as Ti and Sr precursors respectively. Oxygen plasma as an oxidant under different conditions. To optimize of STO films deposition, we controlled the ALD process conditions of TiO₂ films and SrO films such as substrate temperature, source dosing time, RF plasma generating power, RF plasma generating time and reactant O₂ gas flow rate. Chemical bonding state and structural properties of as-grown STO films was investigated by x-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). It is found that Ti anatase phase in the TiO₂ films appear at the substrate temperature above 250°C and 500 cycles, STO phase in the grown films appear at the post annealing temperature above 700°C. The electrical properties of Pt/TiO₂/TiN/Si and Pt/STO/TiN/Si structured films were also investigated by I-V, C-V measurements.

TF-006

Electric Field Control of Spin-Orbit Interaction in Modulation-doped InAs Quantum Well Structure.

Kyung Ho Kim, Hyung Jun Kim*, Hyun Cheol Koo, and Suk Hee Han

Center for Spintronics Research, KIST

The main concept of spin field effect transistor (spin-FET) is that the control of spin-orbit interaction (SOI) in a semiconductor channel manipulates spin precession. The SOI in the asymmetric potential well of the channel can be controled by a gate electric field. Here we have carefully investigated SOI parameter (α) modulation by gate electric field (Vg) in the double-sided doped InAs channel structure (Fig. 1. left). By analysing beating patterns obtained form Shubnikov-de-Hass oscillation, we determine

that α is non-linearly decreased as the increase of V_g (Fig. 1. right). From the figure, α was significantly changed at the negative V_g region, but almost saturated at the positive V_g region, indicating that the control of spin precession is insensitive in the positive V_g region. In this presentation, we will discuss evidence of the non-leaner behavior on the analogy of potential well for the structure.

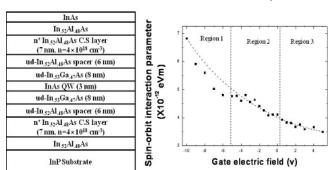


Fig. 1 A Cross-sectional view of double-sided doped InAs QW structure (left), and calculated spin-orbit interaction parameter as the external gate electric field for the structure (right).

* Correspondence E-mail : mbeqd@kist.re.kr