SF-007

CO oxidation on Pd nanoparticles: particle size-effect

태위승, 김광대, 나원, 서현욱, 김영독

성균관대학교 화학과

The CO oxidation reactivity of Pd films with different levels of surface coverage on Ta-oxide was examined at different temperatures. A change in Pd coverage resulted in different Pd particle sizes. The lowest temperature for the onset of CO oxidation was observed (150 °C) at a mean particle size of 2-3 nm. Larger and smaller Pd particles showed CO oxidation reactivity only at higher temperatures. These results suggest that Pd nanoparticles have size dependent catalytic reactivity, which is similar to that of Au. X-ray photoelectron spectroscopy showed no change in the charge state of Pd due to strong metal-substrate charge transfer. This study demonstrates that transition metals other than Au can exhibit a particle size-dependence on the CO oxidation reactivity.

SF-008

Modification of chemical reactivity of Pd nanoparticles supported by fluorinated MgO by high-energy electron beam

<u>김광대</u>¹, 나원¹, 서현욱¹, 태위승¹, 김영독¹, 이병철², 양기호², 박옥경²

¹성균관대학교 화학과, ²한국원자력연구원

Electronic structures of Pd nanoparticles deposited on fluorinated MgO surfaces were studied using X-ray Photoelectron Spectroscopy (XPS). Moreover, CO oxidation reactivity of Pd nanoparticles were measured. Pd atoms nucleated at oxygen-vacancies of MgO surfaces, and Pd atoms at MgO/Pd interfaces were partially positively charged. When fluorinated MgO was exposed to high-energy e-beam under (0.3 and 1 MeV in energy) ambient conditions, removal of F was found. Change in the concentration of F did not have influence on Pd core level shift; however, the catalytic reactivity was decreased upon e-beam treatment, implying that F can act as promotor of Pd catalysts.