PF-P043

Pentacene TFT properties with PVP on the SiO₂ as the gate insulator for low-voltage

K. -J. Kim¹, S. -W. Jeong¹, Yonghan Roh¹

¹School of information and Communication engineering, Sungkyunkwan University

Pentacene thin-film transistors(TFTs) operating at low voltages with improve mobilities and leakage currents are successfully fabricated by the (poly-4-vinylphenol)PVP/SiO₂ gate dielectrics. The PVP film was deposited on the indium-tin-oxide(ITO) glass(sheet resistance~ 10^{Ω}) substrate by the spin-coating. After it was deposited, SiO₂ was deposited by the thermal evaporator. From the electrical measurements, typical I-V characteristic and the field effect mobility of TFTs were observed. Using SiO₂ film, which has stabile thin film characteristics and relatively low leakage current. This double layer(PVP/SiO₂) can be improved electrical characteristic of OTFTs devices. Consequently, high leakage current of PVP gate dielectrics is a characteristic factor, which affects the performance of the OTFTs. The field-effect mobility is increased monotonically with the leakage current decrease.

PF-P044

Inorganic high-k material related characteristics of organic thin film transistors

K. -J. Kim¹, S. -W. Jeong¹, Yonghan Roh¹

¹School of information and Communication engineering, Sungkyunkwan University

The pentacene-based organic thin-film transistors(OTFTs) with a thin insulating inorganic Al₂O₃(high-k material) layer between the pentacene and source/drain electrodes were fabricated. Al₂O₃ as a gate insulator layer grown by atomic layer deposition(ALD). We showed the influence of surface roughness. Also inorganic high-k oxides as well as polymer dielectric were compared: Al₂O₃ deposited by ALD, polyvinyphenol(PVP) single layer or PVP/Al₂O₃ double layer. Atomic force microscopy(AFM) evidenced that surface roughness influence pentacene growth. Eventually, we point out the relationship between the grain size and the thin film transistor mobility. The results demonstrate that it is an effective method to improve the OTFT device characteristics by using a polymer/high-k oxide bi-layer dielectric configuration.