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요 약

The dynamic propagation of an interface crack between two dissimilar functionally graded layers 

under anti-plane shear is analyzed using the integral transform method. The properties of the 

functionally graded layers vary continuously along the thickness. A constant velocity Yoffe-type 

moving crack is considered. Fourier transform is used to reduce the problem to a dual integral 

equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values 

on the dynamic energy release rate (DERR) are presented. Followings are helpful to increase of the 

resistance of the interface crack propagation of FGM: a) increase of the gradient of material properties; 

b) increase of the material properties from the interface to the upper and lower free surface; c) 

increase of the thickness of FGM layer. The DERR increases or decreases with increase of the crack 

moving velocity.

keywords : Functionally graded material, Interface, Moving crack, Dynamic energy release rate

1. Introduction

Functionally graded materials (FGMs) have been recently attracted extensive attention for use in high 

temperature applications and wear-protective coatings. The FGMs are microscopically non-homogeneous 

because the mechanical properties of the FGM vary smoothly and continuously. The fracture behavior of 

the FGM is important design issue. A crack in the FGM may exhibit complex behavior because of the 

variation of the mechanical properties of the material. The fracture behaviors of the FGMs have been 

studied widely for both static and dynamic problems. But, solution of the dynamic crack propagation of 

an interface crack between two dissimilar functionally graded layers has not been presented.

In this paper, dynamic propagation of an interface Griffith crack between two dissimilar functionally 

graded layers under anti-plane shear is analyzed. The properties of the functionally graded layers vary 
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continuously along the thickness. The properties of the two functionally graded layers vary differently 

and the two layers are connected weak-discontinuously (Li et al., 2006). The Yoffe-type model (Yoffe, 

1951) for crack propagation is adopted. Fourier transform is used to reduce the problem to a dual 

integral equation, which is then expressed in a Fredholm integral equation of the second kind. Numerical 

results of the dynamic energy release rate are presented graphically to show the effect of gradient of 

material properties, crack moving velocity, and thickness of layers.

2. Problem statement and formulation

Consider two dissimilar functionally graded layers containing a finite interface crack subjected to 

anti-plane shear loading, as shown in Fig. 1. The cartesian coordinates () are fixed for the 

reference. The functionally graded layers occupy the region, ∞∞ ≤≤, and are thick 

enough in the -direction. The crack is situated along the interface line (≦≦  ).

We assume that the properties of the two functionally graded layers vary continuously along the 

thickness and are simplified as follows (Delale and Erdogan, 1983): 

  


,   


(1)

where   and   are the shear modulus and material density, respectively.   and   are the material 

properties at the interface and   is the non-homogeneous material constant. Subscript     stands 

for the upper and lower layers, respectively.
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Fig. 1 Geometry of a constant moving interface crack between two functionally graded layers

The boundary value problem is simplified if we consider only the out-of-plane displacement such that 

    ,    (2)

where   ( ) is the displacements.

The dynamic anti-plane governing equation for FGM is simplified to

    (3)

where  (   ).

By substituting Eq. (1) into the Eq. (3), the dynamic governing equation is transformed into the 

following equation:
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∇ 


 








(4)

where   .

For the problem of a moving crack with constant velocity "" along the -direction, it is convenient 

to introduce a Galilean transformation such as

 ,  ,  ,     (5)

where ( ) is the translating coordinate system attached to the center of the moving crack.

In the transformed coordinate system, the dynamic anti-plane governing equation for FGM can be 

simplified to the following form:













  (6)

where 

  (7)

A Fourier transform is applied to Eq. (6), and the results are as follows:

   

 


∞

  
   

     (8)

    

 


∞

  
   

     (9)

where

   ,    ,  


 (10)

  is the stress component, and   and   are the unknowns to be solved.

The boundary conditions can be written as 

   ≤ ＜ (11)


 

 ≤ ∞ (12)


  

 ≤ ∞ (13)

     ≤∞ (14)

where   is the uniform shear traction.

It is convenient to use the following definitions:

  (15)

The mixed boundary conditions of Eqs. (11) and (12), continuous condition of Eq. (13), and edge 

loading condition of Eq. (14) lead to a dual integral equations in the following form:




∞

   






 (≤  ) 




∞

    ( ≤∞) (16)
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where 

  










  
  

  
 


 

  


 (17)

The dual integral Eq. (16) may be solved by using new function   defined by

  (18)

where   is the zero-order Bessel function of the first kind.

By inserting Eq. (18) into Eq. (16), we can obtain a Fredholm integral equation of the second kind in 

the following form:






 (19)

where

 


∞

  (20)

  
















 









 





















 (21)

 ,  ,   ,     (22)

   ,   ,   ,   ,    (23)

      ,   










(24)

The mode III dynamic energy release rate is defined and determined in the following forms:

   



 (25)

in which the function   can be calculated from Eq. (19). 

3. Discussions

To investigate the effect of the gradient of material properties, crack moving velocity and thickness of 

layers on the dynamic energy release rate (DERR), numerical analyses are carried out.

Fig. 2 displays the variation of the normalized DERR against the normalized non-homogeneous 

material constant of the upper layer with various normalized non-homogeneous material constants of the 

lower layer at     and   . The DERR decreases when the gradients of material 

properties of the upper and lower layers increase. For the upper layer, the gradient of material properties 

increases as the non-homogeneous material constant increases. But for the lower layer, the gradient of 

material properties increases as the non-homogeneous material constant decreases because value of the 

y-axis is negative. Increase of the gradient of material properties from the interface is beneficial to 
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increase of the resistance of the interface crack propagation of FGM.
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  
  with 

Fig. 3 shows the variation of the normalized DERR against the normalized crack moving velocity with 

the various normalized non-homogeneous material constants. According to the values of the gradient of 

material properties of the upper and lower layers, we can classify into three categories as follows:

Case I : material properties increase when the thickness of upper and lower layers increases from the 

interface,

Case II : material properties decrease when the thickness of upper and lower layers increases from the 

interface,

Case III : material properties increase monotonically from the lower surface ( ) to upper surface 

(  ), and vice verse.

For the Case II and III, the DERR increases as the crack moving velocity increases. But for the Case 

I, the trend is opposite. The DERR decreases when the crack moving velocity increases. That is, 

increase of the stiffness from the interface to the upper and lower surface is helpful to increase of the 

resistance of the interface crack propagation of FGM. 

The effect of the crack moving velocity on the variation of the normalized DERR is shown in Fig. 4 

with various thicknesses of the layers. The DERR increases with the increase of the crack moving 

velocity. But the DERR decreases when the thickness of layer increases. Increase of the thickness of 

FGM layer is also beneficial to increase of the resistance of the interface crack propagation of FGM.

Fig. 5 presents the variation of the normalized DERR against the normalized thickness of the lower 

FGM layer with the various non-homogeneous material constants. As similar to Fig. 4, the DERR 

decreases as the thickness of the lower layer increases. But, over certain value of the thickness of the 

lower layer (about 3.00), the effect of decrease of the DERR is negligible. As seen in Case I of Fig. 3, 

Fig. 5 also shows that increase of the stiffness from the interface to the upper and lower surface is 

helpful to increase of the resistance of the interface crack propagation of FGM. 
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4. Conclusions

The problem of dynamic propagation of a weak-discontinuous interface crack between two functionally 

graded layers under anti-plane shear loading was analyzed by the integral transform approach. The shear 

modulus and mass density of the FGM vary continuously along the thickness. A Fredholm integral 

equation is solved numerically. The computed results show that the followings are helpful to increase of 

the resistance of the interface crack propagation of FGM:

  a) Increase of the gradient of material properties,

  b) Increase of the material properties from the interface to the upper and lower free surface,

  c) Increase of the thickness of FGM layer.

The normalized DERR increases or decreases with increase of crack moving velocity. 
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