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Dynamic Propagation of a Interface Crack in Functionally Graded Layers

under Anti-plane Shear
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The dynamic propagation of an interface crack between two dissimilar functionally graded layers
under anti-plane shear is analyzed using the integral transform method. The properties of the
functionally graded layers vary continuously along the thickness. A constant velocity Yoffe-type
moving crack is considered. Fourier transform is used to reduce the problem to a dual integral
equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values
on the dynamic energy release rate (DERR) are presented. Followings are helpful to increase of the
resistance of the interface crack propagation of FGM: a) increase of the gradient of material properties;
b) increase of the material properties from the interface to the upper and lower free surface; c)
increase of the thickness of FGM layer. The DERR increases or decreases with increase of the crack
moving velocity.
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1. Introduction

Functionally graded materials (FGMs) have been recently attracted extensive attention for use in high
temperature applications and wear—protective coatings. The FGMs are microscopically non-homogeneous
because the mechanical properties of the FGM vary smoothly and continuously. The fracture behavior of
the FGM is important design issue. A crack in the FGM may exhibit complex behavior because of the
variation of the mechanical properties of the material. The fracture behaviors of the FGMs have been
studied widely for both static and dynamic problems. But, solution of the dynamic crack propagation of
an interface crack between two dissimilar functionally graded layers has not been presented.

In this paper, dynamic propagation of an interface Griffith crack between two dissimilar functionally

graded layers under anti-—plane shear is analyzed. The properties of the functionally graded layers vary
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continuously along the thickness. The properties of the two functionally graded layers vary differently
and the two layers are connected weak-discontinuously (Li et al., 2006). The Yoffe-type model (Yoffe,
1951) for crack propagation is adopted. Fourier transform is used to reduce the problem to a dual
integral equation, which is then expressed in a Fredholm integral equation of the second kind. Numerical
results of the dynamic energy release rate are presented graphically to show the effect of gradient of

material properties, crack moving velocity, and thickness of layers.
2. Problem statement and formulation

Consider two dissimilar functionally graded layers containing a finite interface crack subjected to
anti-plane shear loading, as shown in Fig. 1. The cartesian coordinates (X, Y;2) are fixed for the
reference. The functionally graded layers occupy the region, —co < X< co,—h, < ¥Y< h;, and are thick
enough in the Z-direction. The crack is situated along the interface line (—a < X< a,Y=0).

We assume that the properties of the two functionally graded layers vary continuously along the
thickness and are simplified as follows (Delale and Erdogan, 1983):

BY BY
Mg = o€ ) Py = Poe (1)

where u; and p, are the shear modulus and material density, respectively. p, and p, are the material
properties at the interface and 8; is the non-homogeneous material constant. Subscript (i =1,2) stands

for the upper and lower layers, respectively.
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Fig. 1 Geometry of a constant moving interface crack between two functionally graded layers

The boundary value problem is simplified if we consider only the out-of-plane displacement such that
Uy =uy =0, uy=w,,(X Yt) ()

where u,; (k=X,Y.Z) is the displacements.

The dynamic anti-plane governing equation for FGM is simplified to

05 (X, Yit) = pw, 3)

where o, (j= X, V).

By substituting Eq. (1) into the Eq. (3), the dynamic governing equation is transformed into the

following equation:
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where ¢ = 1/, .
non

For the problem of a moving crack with constant velocity "v” along the X-direction, it is convenient

to introduce a Galilean transformation such as
z=X—vt y=Y z=7Z t=t (5)
where (z,7,z) is the translating coordinate system attached to the center of the moving crack.

In the transformed coordinate system, the dynamic anti-plane governing equation for FGM can be

simplified to the following form:

282wi(x,y) E)zwi(:c,y) E)wi(z,y)

P * oy’ i ay -0 ©)

where

o= 1*(1}/02)2 (7

A Fourier transform is applied to Eq. (6), and the results are as follows:

w,; (z,y) = %/:O[ Ali(s)eiq“y+A2,i(s)eqz’y}cos (sz)ds ®)
2 i —({9; Y q1; Y

0, (2y) = pg 7\/ [*q”-A]i(s)e Yt g Ay (s)eh"/]cos (sz)ds 9)
T

where

¢ =0 +5i/2, ;i :57175’1'/2» o; = Vo‘252+/372/4 (10)

o, 1S the stress component, and 4,; and 4, are the unknowns to be solved.

yzi

The boundary conditions can be written as

O'Zyi($,0) = -1 (0<z<a) an
wy (2,0") = w, (2,07) (a<z<o) (12)
Jyzl(x,0+) = 0y22($707) (a <z <o) (13)

Uyzl(x’hl)za— (xv_hg):() (O<IE§ OO) (14)

y22
where 7, is the uniform shear traction.
It is convenient to use the following definitions:
Ay () = Ay () + Ay (s) — Ay (s) = Als) (15)
The mixed boundary conditions of Egs. (11) and (12), continuous condition of Eq. (13), and edge
loading condition of Eq. (14) lead to a dual integral equations in the following form:

fOOsF(s)A(s)cos(sa[:)ds:izi (0<z<a)
2 a py

0
/UwA(S)COS(Sw)dSZO (a<z < ) (16)
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21 Q11Q1QQQ1Q22(1_67261}11)(1_67262}12)
F(s) = o s 25,k 25,1, ~25,h, 26,h, (17)
q11q21(1*6 )(qu + gy )+q12q22(1*e )(q21 + gy )
The dual integral Eq. (16) may be solved by using new function £2(¢) defined by
ats) = [ €)1 (se)de (18

where J, is the zero-order Bessel function of the first kind.
By inserting Eq. (18) into Eq. (16), we can obtain a Fredholm integral equation of the second kind in
the following form:

W(E)+flL(E,H)LP(H)dH= VE (19)
0
where
L(=H) = VEH [ SIP(S/a) = 1](SH) (52)dS (20)
0
hy hy
(1—e )1—e )
F(S/a) :%% . Q11Q12Q21Q22 . - - 1)
—2A,— —2A,— —24,— —2A,—
Q11Q21(176 ! )(Q11+Q226 ‘ )+Q12Q22(176 ‘ )(Q‘21+Q‘226 “)
&n :A1+B1/2y Qs :A2+Bz/27 @ =4, _31/2’ o :A2_32/2 (22)
S=as, B, =af,, B,=af,, A =ad, A,=ad, (23)
_ _ = w2 T w(E)
'r]f(),H, f* a_, Q(f) = EE,M—O \/E (24)

The mode III dynamic energy release rate is defined and determined in the following forms:
G][[(U) = ;T—aﬁ?)!pz(l) (25)
Ho

in which the function ¥(1) can be calculated from Eq. (19).
3. Discussions

To investigate the effect of the gradient of material properties, crack moving velocity and thickness of
layers on the dynamic energy release rate (DERR), numerical analyses are carried out.

Fig. 2 displays the variation of the normalized DERR against the normalized non-homogeneous
material constant of the upper layer with various normalized non—-homogeneous material constants of the
lower layer at v/c,=0.4 and h;/a=h,/a=10.0. The DERR decreases when the gradients of material
properties of the upper and lower layers increase. For the upper layer, the gradient of material properties
increases as the non-homogeneous material constant increases. But for the lower layer, the gradient of
material properties increases as the non-homogeneous material constant decreases because value of the

y-axis is negative. Increase of the gradient of material properties from the interface is beneficial to
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increase of the resistance of the interface crack propagation of FGM.
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Fig. 2 Variation of the normalized DERR Fig. 3 Variation of the normalized DERR
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Fig. 3 shows the variation of the normalized DERR against the normalized crack moving velocity with
the various normalized non-homogeneous material constants. According to the values of the gradient of
material properties of the upper and lower layers, we can classify into three categories as follows:

Case I : material properties increase when the thickness of upper and lower layers increases from the

interface,

Case II : material properties decrease when the thickness of upper and lower layers increases from the

interface,

Case TII : material properties increase monotonically from the lower surface (y=—h,) to upper surface

(y=h,), and vice verse.

For the Case II and III, the DERR increases as the crack moving velocity increases. But for the Case
I, the trend is opposite. The DERR decreases when the crack moving velocity increases. That is,
increase of the stiffness from the interface to the upper and lower surface is helpful to increase of the
resistance of the interface crack propagation of FGM.

The effect of the crack moving velocity on the variation of the normalized DERR is shown in Fig. 4
with various thicknesses of the layers. The DERR increases with the increase of the crack moving
velocity. But the DERR decreases when the thickness of layer increases. Increase of the thickness of
FGM layer is also beneficial to increase of the resistance of the interface crack propagation of FGIM.

Fig. 5 presents the variation of the normalized DERR against the normalized thickness of the lower
FGM layer with the various non-homogeneous material constants. As similar to Fig. 4, the DERR
decreases as the thickness of the lower layer increases. But, over certain value of the thickness of the
lower layer (about 3.00), the effect of decrease of the DERR is negligible. As seen in Case I of Fig. 3,
Fig. 5 also shows that increase of the stiffness from the interface to the upper and lower surface is

helpful to increase of the resistance of the interface crack propagation of FGM.
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4. Conclusions

The problem of dynamic propagation of a weak—discontinuous interface crack between two functionally
graded layers under anti-plane shear loading was analyzed by the integral transform approach. The shear
modulus and mass density of the FGM vary continuously along the thickness. A Fredholm integral
equation is solved numerically. The computed results show that the followings are helpful to increase of
the resistance of the interface crack propagation of FGM:

a) Increase of the gradient of material properties,
b) Increase of the material properties from the interface to the upper and lower free surface,
¢) Increase of the thickness of FGM layer.

The normalized DERR increases or decreases with increase of crack moving velocity.
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