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Abstract 

This paper presents a Kalman filter based modeling algorithm for autonomous robots. State of the 

robot systems is measured by using embedded sensors and then carried to a host computer via ubiquitous 

sensor network (USN). We settle a linear state space motion equation for unknown system dynamics and 

modify a popular Kalman filter algorithm in deriving suitable parameter estimation mechanism. We 

conduct real‐time experiment to test our proposed modeling algorithm where velocity state of the 

constructed robot is used as system observation.

1. Introduction

Recently, communication network‐based monitoring, 

diagnostic and control systems have been the focus of 

many industrial applications. These systems were 

motivated in part by the increase in wireless 

communication applications. Their major advantage is 

that even complex systems can be easily implemented 

with more reliability and efficiency. Furthermore, the 

ubiquitous sensor network (USN) provides a popular 

realization of network‐based systems [1]‐[5].
An important issue in implementing network‐based 

dynamic systems is time delays. Since time delays cause 

deterioration in system stability or performance, a more 

efficient system configuration to overcome their effects 

is required [6]‐[10]. In addition, mathematical modeling 

of network‐based systems must account for the effects 

of time delays to provide reliable estimates of system 

parameters. Unfortunately, most existing algorithms for 

USN modeling typically neglect time delays. 

This paper presents a novel modeling algorithm for 

autonomous robot systems under USN configuration 

based on Kalman filter theory. We propose an 

augmented state‐space model for unknown system 

dynamics, largely composed of original state and system 

parameter vectors to embed time delay effect. A 

significant contribution of the proposed modeling 

technique is that the actual system state is modeled 

online simultaneously with parameter estimation. In 

practice, the system parameters are time‐varying because 
of the non‐stationary communication environment. We 

demonstrate from real‐time experiments that our 

methodology allows online modeling of unknown 

dynamics with a wireless network topology.

This paper is organized as follows: In Section 2 our 

autonomous robot system is described and in Section 3 

an augmented state‐space model is proposed for the 

system. We derive a Kalman filter based estimation 

algorithm in Section 4 and analyze its convergence in 

Section 5. Real‐time experiments and their results are 

provided in Section 6, and conclusions and future work 

are given in Section 7.

2. USN based autonomous robot systems

We construct an autonomous robot system whose 

state signal is transmitted to a host computer through 

the USN technique for online system modeling. Fig. 1 

shows the autonomous robot implemented in this paper. 

Here, an embedded microcontroller ATmega128(L) 

module provides the core computing processor and a 

geared DC motor is connected to each of the four 

wheels, which are controlled from the microprocessor. 

The state of the system is measured online using 

embedded sensors. The USN module used in this paper 

is built with the CC2420 chip which is supported by the 

802.15.4 standard communication and the 2.4GHz 

ZigBee protocols. A USN module is located in the 

remote robot and another in the host computer. The 

module in the robot sends its state signal acquired from 

the sensors to the USN module of the host computer. 

The received signal is used for modeling of robot 

dynamics by an estimation algorithm coded in the C++ 

programming language. A block diagram of the robot 

modeling system is shown in Fig. 2.

Fig. 1 Autonomous robot.
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Fig. 2 System configuration of the USN‐based robot 
modeling system.

3. System modeling of the robot system
We represent the robot system in Fig. 1 with a linear 

discrete model as
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where x∈Rn is a state vector, u, y, d∈R are input, 
output, and disturbance scalar respectively, and A∈Rn×n, 
B∈Rn×1, and C∈R1×n are corresponding matrices. In (1) 
disturbance d is applied to observation as noise signal 
with Gaussian random statistics as
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where E[⋅] is the expectation operator. The state 
measurement of the robot system is transmitted to the 
host computer through the wireless communication 
network but arrives after l cycles due to the network 
time delay (see Fig. 3). To include the time delay in the 
system dynamics, we rewrite the state space model as 
[11]

)()()(
)()()()1(

kmkHxkz
kWdkukXkX

+=
+Γ+Φ=+

(3)
where the augmented state vector X includes the original 
state vector of (1) and l delayed observation vectors and 
is given by
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Correspondingly, the related matrices are expressed as
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In (3), an observation noise m is similarly defined as a 

Gaussian random variable with the following properties:
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Fig. 3 Block diagram of network‐based monitoring 
systems.

4. Kalman filter based parameter estimation
This Section presents an estimation methodology for 

the system in (1) using Kalman filter theory. First, we 
rewrite the state space model of (1) in the controllable 
form with state and input matrices respectively given by
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The parameter vector to be estimated in (7a) is given by

[ ]Tnaaaa L21= (8)
For parameter estimation, we construct an augmented 
vector composed of the original state, the delayed 
observations, and the estimated parameter vectors of (8):

[ ] lnT
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The augmented state‐space equation is given by
( )kkdkukXfkX AAA ),(),(),()1( =+ (10)

where fA(⋅) denotes a nonlinear function. By applying 
(9) to (10), we have
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where
( ) )()()(),(1 kWdkukXkaf +Γ+Φ=⋅ (12)

and f2(⋅) is determined based on our model of the 
evolution of the parameter vector. Similarly, the output 
vector in (3) is rewritten as

)()()( kmkXHkz AA += (13)
where
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Next, we apply the well‐known extended Kalman filter 
[12] to derive a parameter estimation algorithm for (11). 
Based on the Kalman filter, we obtain the state 
adjustment rule for (9) as
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where ζ is the actual output measurement. This 
adjustment rule is formed with recursive computation 
and the estimated state vector in (15) is given by
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with partial differential terms
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Since the function f2 in (17) is dependent on the 
parameter model, we do not calculate the two partial 
differential equations ∂f2/∂a and ∂f2/∂u directly. In (15), 
the Kalman filter gain matrix is expanded as
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and [ ]TA dfWW ∂∂= 2 . Finally, we obtain an 
adjustment rule for the covariance matrix
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The block diagram of Fig. 4 summarizes the proposed 
parameter estimation algorithm.
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Fig. 4 Block diagram of the Kalman filter based 
modeling for the robot system.

5. Convergence property of the estimation 
algorithm

An estimated parameter vector in the proposed 
modeling algorithm must converge to a bounded limit 
with initial state condition and bounded input quantity. 
We study the convergence of the estimation algorithm 

using linear discrete system stability theory. We first 
expand the state estimation equation (15) by substituting 
(16) as
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Applying z transformation to (22), we have
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For the Schur stability [13] of the discrete‐time system, 
all the roots of its characteristic equation (25) must be 
inside the unit circle, 
[ ] AAn KHI Φ− (25)
i.e. all the eigenvalues of the state matrix must be inside 
the unit circle. For more detail, letting its eigenvalues λi 

= pi + jqi, i=1,2,⋅⋅⋅, a sufficient condition for stability is 

that 122 <+= iii qpλ .

6. Real‐time experiment
We performed real‐time experiments to evaluate our 

proposed estimation algorithm using the robot system of 
Fig. 1. We provide a sinusoidal input waveform with 
positive offset and select the robot steering velocity as 
the system output. 

Fig. 5 shows the observed velocity measurement for 
the robot system. The velocity rise time for the robot is 
about 2 sec and is followed by persistent non‐periodic 
oscillations of about 23 and 37 rpm. The observation in 
Fig. 5 is distorted by random sensor noise as expected 
in practice. We estimate state of the robot system based 
on the observation dataset of Fig. 5 by using the 
proposed modeling algorithm described in Section 4. We 
initialize the estimation algorithm with the covariance 
values of (2) and (6) as S=Q =100. The initial 
covariance and filter gain matrices P(0) and K(0) in (19) 
and (21) are assumed uniformly distributed in [‐1, 1]. 
Fig. 6 shows a plot of the error between the actual 
observation and estimation signal defined by

2
1 ))(ˆ)(()( kxkke −= ς (26)

From Fig. 6, we observe a peak time of about 1 sec. 
The steady‐state oscillations are drastically reduced with 
only a small non‐periodic ripple with about 2 maximum 
rpm and 1 average rpm. The steady‐state error of Fig. 
6 is acceptable since noise is inevitable in wireless 
sensor networks and its effects cannot be completely 
eliminated. The time history of the estimated parameters 
is plotted in Fig. 7. Beginning from zero, the parameter 
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a1 includes only positive numbers while a2 is strictly 
negative during the time interval. However, the 
evolution pattern of the two waveforms is very similar 
to the error signal of Fig. 6 in that the trajectories 
include sustained oscillations. Although the robot 
system has non‐stationary stochastic dynamics, the 
estimation algorithm adapts to obtain acceptable parameter 
estimates. Lastly, the trajectory of the filter gains is 
plotted in Fig. 8. The plot shows that the filter gains are 
adjusted to adapt to environmental changes resulting in 
similar oscillations to those observed in the plots.
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Fig. 5 Velocity state of the robot system.
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state sequences.
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Fig. 7 System parameter estimates.
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Fig. 8 Kalman filter gains.

7. Conclusions
This paper presents online modeling of an 

autonomous robot using an extended Kalman filter 
approach. The state of the robot system is transferred 

via the USN topology to the host computer where state 
estimation is achieved based on this observation. The 
modeling algorithm is formulated in terms of a discrete 
extended Kalman filter approach. The system model 
uses an augmented state composed of the robot state, 
time‐delayed observations, and an estimated parameter 
vector. We conducted real‐time experiments to evaluate 
our modeling method and our analysis of the estimation 
error sequence yielded satisfactory results. We 
summarize the contributions of this paper as follows: 1) 
Real‐time experimental implementation for autonomous 
robot systems built with an embedded USN. 2) A new 
linear dynamic modeling algorithm using an augmented 
framework including the monitored system state and 
parameter estimation. 3) A state estimation algorithm 
using an enhanced Kalman filter method.

Future work will include control systems for 
autonomous robots using communication networks. We 
will investigate more advanced monitoring and 
distributed control mechanism for mobile multi‐robot 
cooperative systems under the USN topology.
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