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Abstract
This paper presents a control design for networked control systems (NCS) with uncertain time delay 

using model matching. The dynamics of the time delay are approximated through the Pade linearization 
and the uncertain delay term is recursively estimated by the recursive least square (LS) algorithm. 
Computer simulation illustrates that the proposed control compares favorably with a recently published 
control approach.

1. Introduction

Networked control systems (NCS) are feedback 

control systems where the plant is connected to the 

controller through a communication network. NCS are 

popular in industry because they can eliminate 

unnecessary wiring and provide flexible system 

configurations [1], [1]. However, a challenging issue in 

NCS is the effect of the delay which usually occurs 

between the remote controller and the targeted plant. 

Time delay often results in deterioration in control 

performance and can even cause instability. Thus, it is 

necessary to consider the time delay in the design of 

NCSs to guarantee satisfactory performance. Recently, 

engineers have actively investigated complicated control 

solutions to this problem [2].

Recent publications include multiple tutorial articles 

that discuss the stability and control of linear time‐
invariant NCS. The simplest design approach is the use 

of an augmented model to determine the control 

parameters. In [3], the authors proposed a control 

approach using an augmented discrete‐time system 
model for periodic delay and extended their approach to 

NCS with non‐identical time delay in [4]. 
Several stochastic approaches have been proposed for 

the more realistic case of a randomly varying time 

delay. In [5] and [6], a first‐in‐first‐out queuing scheme 
was applied to construct a stochastic predictor of the 

future state. The authors used a predictor to statistically 

predict the arrival rate for a queue model with 

predefined probability density. Optimal stochastic 

control was applied in [7] to overcome the adverse 

effects of a deterministic time delay on NCS with 

random output. In [8], the authors used stochastic 

control of random NCS with two time delays (sensor 

and actuator) modeled as homogeneous Markov chains. 

They used the simplifying assumption of statistically 

stationary time delays, which is rarely valid in practice. 

Proportional‐Integral (PI) control was designed in [9] 
for time‐delay systems with time‐varying delay whose 
parameters are adaptively updated. However, the 

controller design against uncertain time delay is difficult 

to obtain explicitly for practical application. More 

recently, complicated NCSs have been considered using 

sophisticated system theory such as robust control, 

system perturbation theory, etc [10], [11]. In [12], the 

authors treated a nonlinear MIMO NCS for which 

Lyapunov perturbation stability was applied to design 

nonlinear control system. State feedback control was 

utilized for linear continuous NCS in [13] and [14], 

respectively. They expressed the NCS with state‐space 
representation and utilized continuous linear system 

theory for deriving the control system. Alternatively, 

unlike typical control design, sampling time scheduling 

where the sampling interval is arbitrarily changed online 

to maintain a stable NCS was proposed in [15] and 

applied to multi‐dimensional NCSs in [16].
In much of the published NCS research, authors 

usually dealt with NCSs characterized by linear time‐
invariant models, fixed time delay, or deterministic 

behavior. While the proposed methodologies can be 

successfully implemented in simulated experiments, 

significant errors are unavoidable in practice due to the 

nonlinear and random nature of NCSs. Thus, it is 

essential to change the controller framework to cope 

with a more realistic system environment. This often 

requires robustifying NCSs with respect to modeling 

errors and disturbances [1], [1]. However, it is hard to 

analytically model NCS dynamics because changes in 

the NCS environment are not completely predictable.

In this paper, we consider uncertain time delay which 

varies around a nominal value. This assumption is 

reasonable in practice. We first approximate the time 

delay by a rational first order function via the Pade 

method. We then use model matching to construct a 

controller for the NCS. To estimate the perturbed time 

delay, we apply a recursive LS algorithm. The proposed 

control design is explicitly applicable in practical 

implementation. We demonstrate the advantages of our 

control approach compared with the control of [1].

This paper is organized as follows. In Section 2, we 

describe a NCS with uncertain time delays. We propose 
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model matching based control design for the NCS in 
Section 3. We derive the recursive LS algorithm to 
estimate the perturbed time delays in Section 4. A 
simulation example is given in Section 5 and 
conclusions are given in Section 6.

2. NCS with time delays
We consider a SISO NCS with two time delays: a 

control delay τ1 and an observation delay τ2 (see Fig. 
1). The transfer function of the closed‐loop system is 
expressed by
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where R(s) is the reference input, Y(s) is the system 
output, and G0(s) = N0(s)/D0(s) and C(s) = NC(s)/DC(s) 
are transfer functions of the nominal plant and the 
controller, respectively. We assume that the transfer 
function of the plant is strictly proper. The time delays 
are expressed using a first order Pade approximation 
[17] as
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where T1, T2 > 0. Substituting (2) and (3) into (1), we 
obtain
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Fig. 1. A block diagram of time‐delayed control systems.

3. Model matching based control design for an 
uncertain NCS

We first derive a control design for the nominal NCS 
using model matching. The control objective is to 
construct a controller transfer function C(s) such that the 
dynamics of the overall system G(s) follow a specified 
model:
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that is, G(s) → GM(s).  Equating to the transfer function 
of (4) yields the controller
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In terms of the numerator and denominator polynomials, 
we have the controller transfer function
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Next, we design the NCS control with randomly varying 
but bounded uncertain time delays. This occurs in 
practical implementation due to change of network 
environment, system uncertainty, etc [7]. We express the 
time delays as the sum of nominal and perturbed terms as
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where * and Δ denote nominal and perturbed variables 
respectively. We similarly express each approximated 
transfer function for the perturbation as
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Substituting (9) and (10) into (4), we obtain the 
perturbed transfer function of the overall system
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Similarly, we obtain the transfer function of the 
controller for the perturbed plant
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We rewrite (12) in terms of nominal and perturbation 
terms, i.e.

)()(

)()(
)( *

*

sDsD

sNsN
sC p

CC

p
CC

ΔΔ

ΔΔ

+

+
=Δ

(13)

where
*
2

*
10

* )( DDNDsN MC =
Δ (14)

( )211
*
22

*
10)( DDDDDDNDsN M

p
C ΔΔ+Δ+Δ=

Δ (15)
and

( )( )∗∗∗−=
Δ 210

* DNNNDD MMC (16)

( )
( )210210210

210210210

NNNNNNNNNN

DNNDNNDNNDD

M

M
p

C

ΔΔ+Δ+Δ−

ΔΔ+Δ+Δ=
∗∗∗∗∗

∗∗∗∗∗
Δ

(17)

The nominal terms in (13) are given as fixed values in 
the design procedure, but the perturbed values are 
estimated online in real‐time implementation.

4. Online parameter estimation using recursive LS 
estimation

We apply recursive LS estimation for the perturbation 
parameters in (13). First, we alternatively express the 
input‐output model in Fig. 1 as

)()()()( sUsBsYsA = (18)
where
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Similarly, the two polynomials are expressed with 
separate nominal and perturbation terms as
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For simplicity, let the two polynomials of (21) be
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We express a current output from (28) as
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where y = y(t), u = u(t), and D = d/dt. In vector form, 
equation (29) is written as
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For recursive estimation generally and digital control 
implementation, we need the discretized model
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where v is a zero mean Gaussian random variable and 
the discrete measurement vector is given by
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The parameter estimateθ̂  is recursively updated by
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and P(k) is the error covariance matrix. The error 
covariance is updated with the rule

[ ] )()()()1( kPkhkKIkP T−=+ (37)

5. Numerical example
We adapt the time‐delayed system of [2] for our 
simulation example. The nominal plant model with no 
delay is given by
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The system is a second‐order model with marginally 
stable dynamics. The nominal time delays are τ1 = τ2 = 
2.7×10‐4 sec, thus we have
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and the controller transfer function
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We select the desired model transfer function as
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Substituting (41) into (40), we finally obtain the 
nominal controller
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Next, we derive the controller for the perturbed plant 
with uncertain time delays given by
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respectively where Δτ1 and Δτ2 are zero‐mean Gaussian 
random variables with time‐varying variances. Similarly, 
substituting (43) and (44) to (42), we have a controller 
for the perturbed model as
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The transfer function of the plant with this controller is 
expressed as
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Using this formula, we estimate the uncertain 
parameters Δτ1 and Δτ2 using the recursive LS 
algorithm of Section 4. For numerical simulation, the 
perturbed time delays are realized as nonstationary 
Gaussian random distributions, i.e. Δτ1~N(0,σ1) and Δτ
2~N(0,σ2) where random variances σ1 and σ2∈(0,3]. We 
simulated the system using MATLAB© to evaluate our 
control method.

Fig. 2 gives the step response of the proposed control 
with that of the PID control of [1]. For the design given 
in [1], PID control gives a large overshoot and a highly 
oscillatory step response with a large settling time. By 
contrast, our control gives a smaller overshoot with a 
settling time of about 25 sec. Based on our computer 
simulations, we conclude that our proposed control 
achieves its design objectives and outperforms the 
traditional PID approach.

6. Conclusion
We propose a novel control design for NCS with 

uncertain time‐delays by using model matching. Time 
delays are approximated by the Pade linearization and 
uncertain delays are estimated online via a LS 
algorithm. Computer simulation shows that the proposed 
control outperforms PID control. Future work includes 
extension of the proposed control design to multi‐
variable systems.
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Fig. 2. System responses for PID and proposed controls.
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