Miniatured Planar Bandpass Filter Using the Coupled Metamaterial Resonators

Tang-yao Xie^{*} · Young-bea Park^{*} · Gi-rae Kim^{*} ^{*}Silla University, Busan, Korea, E-mail : <u>grkim@silla.ac.kr</u>

결합 메타물질 공진기를 이용한 소형화된 평면구조 대역통과여파기

사당요^{*}, 박영배, 김기래 신라대학교 전자공학과

ABSTRACT

In this article, new microstrip slow-wave bandpass filters using open loop resonator loaded with inter-digital capacitive fingers is proposed. The filter features not only compact in size, but also exhibits spurious stop-band rejection. Filters of this type with elliptic function and Chebyshev response are demonstrated. There is good agreement between experimental and full-wave electromagnetic (EM) simulation results.

키워드

meandered microstrip; band-reject filter; the inter-digital loop resonator (IDCLLR); split ring resonator (SRR)

I. INTRODUCTION

In many applications, miniaturized filters are highly sought after. Planar filters are preferred as they can be fabricated using low-cost printed circuit technology. A conventional microstrip with parallel-coupled half-wavelength filter resonators is too large to be used in the mobile, personal communication systems. Thus, it is desirable to develop a new microstrip bandpass filter structure that is compact and planar. Slow-wave structures have been used to reduce the size of the filter. Conventionally, a half-wave length open-loop resonator is used as a filter [1]. Microstrip line with both ends capacitively loaded with a pair of rectangular open-stubs [2] and a pair of triangular stub [3] has demonstrated to reduce the circuit size. On the other hand, capacitively loaded microstrip and CPW loop resonator has been investigated in [4, 5]. Both resonators removed the internal part of the central strip of a conventional microstrip half-wavelength resonator. This effectively turns the standard resonator into a

loop resonator. The fundamental resonance frequency might be estimated by assuming that its mean circumference equals the guided wavelength provided that the loop strip width is much smaller than the width of the associated half-wavelength resonator. The effect of this process on the slow wave is only small. To reduce the frequency of the resonator, it is loaded with capacitive fingers. The velocity reduction on this type of transmission line is control by the number of fingers within the narrow loop strip width. The resonator is a closed-loop structure. They can only be implemented in few filtering configurations. Conventionally, parallel-coupled line or end-coupled line filters design approaches can be used in this case [6]. In order to enhance filter performance, various filter configurations including elliptic or quasi-elliptic response would be desired. In this paper, we proposed to use the inter-digital capacitive fingers, which loaded in the open-loop resonator to achieve cross-coupled slow-wave microstrip elliptic function and Chebyshev filters. In [4, 5], the resonator is a transmission line modified with etched fingers to achieved slow-wave effect and miniaturization. Here, the attempt is to provide close capacitive coupling between two arms of the transmission line using added fingers to create a new miniaturize resonator. This method of enhancing the capacitively loaded microstrip open-loop resonator enables the presented

II. METAMATERIAL RESONATOR

The quasi-static resonant angular frequency $\omega_0 = 1/\sqrt{L_0C_0}$ of IDSRR depends on the total inductance L0 of the IDSRR approximated by that of a single close ring; and the quasi-static equivalent capacitance C0 of the inter-digital capacitor [10]

$$C_{ep}(pF) = \frac{\varepsilon_r 10^{-3} K(k)}{18\pi K'(k)} (N-1)l$$
(1)

where *er* is the effective permittivity of microstrip line with the width d, the number of fingers N, and the finger length l; K(k) and K' (k) is complete elliptic function of the first kind and its complementary function with modulus $k=\tan^2[d\pi/4(d+s)]$. Obviously, the equivalent capacitance of IDSRR depends on so many parameters, resulting in more freedom in design. Fig. 2 shows the structure of IDSRR-based and SRR-based resonator. A meandered microstrip line of 50 ohm and the embedded IDSRR/SRR are etched on the same surface of substrate (relative permittivity er= 2.17, thickness h=0.7874mm). The width of microstrip line is w=2.4mm corresponding to 50 ohm of characteristic impedance. The spacing between IDSRR/SRR and line is r=0.2mm. The size of IDSRRR/SRR is a=10.45mm, b=11.95mm, c=1.2mm, g=e=0.2mm, d=s=0.3 mm, l=7.6 mm, f=h=k=0.6mm, and number of fingers N=6 [refer Fig. 1(a) and 1(b)].

The simulated (using HFSS V10 software) frequency responses for both structures are described in Fig. 3. Where [1] the resonant frequency of IDSRR-based meandered filter (~1.8 GHz) is lower than that of SRR-based one (~3.3 GHz), i.e., the resonator size can be reduced by compact-ratio 0.54:1 for the same operated frequency [2]. Obviously, the latter has higher rejection level and wider

stop-bandwidth than the former. This is because the SRR is the structure of double rings, so that larger induced current can be excited at resonance, as a result, higher rejection level can be obtained in SRR-based SRR-based filter [3]. In comparison, а SRRs) single-stage (a pair of but non-meandered filter performs ~-10 dB maximal insertion-loss at resonant frequency [6], it clearly displays the improvement due to stronger coupling in meandered structure [4]; some systematic errors (~6% for resonant frequency) exist between simulation and measurement. Moreover, if changed the inter-digital length l but keep fixed sizes s, d, and g [refer Fig. 1(b)], it is easier to design an IDCLLR with desired frequency.

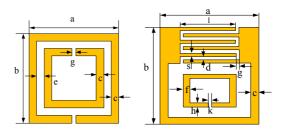


Fig. 1 (a) the conventional square open-loop resonator (b)IDSRR

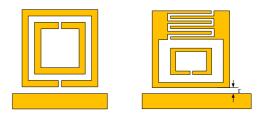


Fig. 2 Structure of single-stage resonator (a) SRR-based structure (b) IDSRR-based structure

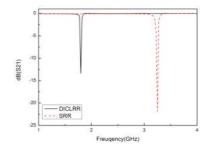


Fig. 3 Insertion loss frequency responses of single-stage resonator

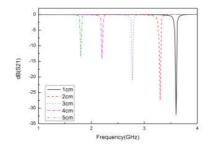


Fig. 4 Simulated insertion-loss responses of IDCLLR-based filter varied with interdigital

III. FILTER DESIGN THEORY

The design parameters of bandpass filters, i.e., the coupling coefficients and external quality factor in Fig. 5, can be determined in terms of circuit elements of a low-pass prototype filter of Fig. 6, which consists of lumped capacitors and ideal admit The design parameters of bandpass filters, i.e., the coupling coefficients and external quality factor in Fig. 5, can be determined in terms of circuit elements of a low-pass prototype filter of Fig. 6, which consists of lumped capacitors and ideal admittance inverters. The relationships between the bandpass design parameters and the low-pass elements are

$$Q_{ei} = Q_{eo} = \frac{C_1}{FBW} \tag{1}$$

$$M_{n,n-1} \equiv M_{N-n,N-n+1} = \frac{FBW}{\sqrt{C_n C_{n+1}}}$$
 for n=1 to N/2 (2)

$$M_{m,m+1} = \frac{FBW \cdot J_m}{C_m} \quad \text{for } m=N/2 \tag{3}$$

$$M_{m-1,m+2} = \frac{FBW \bullet J_{m-1}}{C_{m-1}} \quad \text{for } m=N/2 \quad (4)$$

where denotes the fractional bandwidth of the bandpass filter, is the capacitance of the lumped capacitor and is the characteristic admittance of the inverter, and is the degree of the filter. To find the element values of a low-pass prototype, one may use an approximate synthesis method described in [2]. This method is simple, but it suffers from inaccuracy and can even fail for highly selective filters that require moving the attenuation poles closer the cutoff to

frequencies of the passband. However, the exact synthesis process is rather complicated and time consuming because there does not exist any closed-form formulas for the element values. The values of the attenuation pole frequency were chosen such that they cover a wide range of practical designs for selective microstrip bandpass filter responses. Referring to Fig. 1, the side lobe at the stopband would be too high if is smaller than the given values.

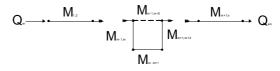


Fig. 5 General coupling structure of the bandpass filter

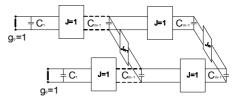


Fig. 6 Lowpass prototype filter for the filter synthesis

V. COUPLING COEFFICIENTS

The new square open-loop resonator loaded with inter-digital fingers depicted in Fig. 1(b) is used to demonstrate a cross coupled elliptic function and a Chebyshev response filter. Both the 4-pole filters with center frequency at 1.8 GHz and a fractional bandwidth bandwidth of 100MHz were designed and fabricated on Teflon substrate thickness of 0.7874 mm with relative dielectric constant &r of 2.12. EM simulator HFSS V10 was used to simulate and design the filter. Fig. 3 shows the characterized three basic coupling structures referred to as the magnetic coupling, electric coupling and mixed coupling. The coupling coefficient Kij of any pair of adjacent resonators can be determined by Eq. (4):

$$K_{ij} = \pm \frac{f_{p2}^2 - f_{p1}^2}{f_{p2}^2 + f_{p1}^2}$$
(5)

where f_{p1} and f_{p2} are the lower and higher split resonant frequencies of a pair of coupled resonators when they are decoupled from the rest. The 4-pole cross coupled filter could be designed using the method described in [8], from which the lump-element values were determined as $K_{12} = 0.0322$, $K_{23} = 0.0393$, $K_{34} = 0.03173$, and $K_{41} = 0.030$.

Fig. 7 and 8 show the layout, simulated and measured performances of filter. The spacing designated in the cross-coupled filter is as follows: a12=1mm, a23=2.0mm, a34=1mm and, a14=1.3mm. The effects on the center frequency and bandwidth are negligible as long as the gap tuning is small. The measured passband insertion loss is -3 dB, good agreement with the simulation. Fig. 8 shows the simulated and measured characteristics of the filters. Both filters exhibit a good rejection at second harmonic as predicted. Fig. 9 shows the prototype of bandpass filter.

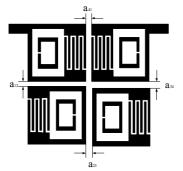


Fig. 7 Four-pole IDCLLR-based meandered bandpass filter

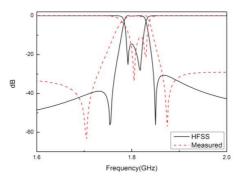


Fig. 8 Simulated and measured frequency response of insertion/return-loss.

IV. CONCLUSION

New miniaturized slow-wave open-loop resonator structure loaded with inter-digital capacitive fingers is proposed. We have demonstrated a 4-pole cross-coupled elliptic function filter and a Chebyshev filter of this type. Both filters achieved compact miniaturization and stopband spurious rejection. Simulated and measured results are in good agreement.

Fig. 9 Fabricated prototype

REFERENCES

- J. S. Hong and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters", *IEEE Trans. Microwave Theory Tech.*, vol. 44, pp. 2099 2109, 1996.
- [2] J. S. Hong and M. J. Lancaster, "Theory and experiment of novel microstrip slow-wave open-loop resonators filters", *IEEE Trans. Microwave Theory Tech.*, vol. 45, pp. 2358 2365, 1997.
- [3] J. J. Yu, S. T. Chew, M.S. Leong, and B.L. Ooi, "New class of microstrip miniaturized filter using triangular stub", *Elec. Lett.*, vol 37, pp. 1169 1170, 2001.
- [4] J. S. Hong and M. J. Lancaster, "Capacitively loaded microstrip loop resonator", *Elec. Lett.*, vol. 30, pp. 1494 1495, 1994.
- [5] A. Gorur and C. Karpuz, "Experimental study on characteristics of loaded CPW resonators", *Microwave Opt. Technol. Lett.*, vol. 21 pp, 199 201, 1999.
- [6] J. S. Hong and M. J. Lancaster, "Edge coupled microstrip loop resonators with capacitive loading", *IEEE Microwave Guided Wave Lett.*, vol. 5, pp. 87–89, 1995.
- [7] Sonnet Software Inc., Sonnet simulator.
- [8] J. S. Hong and M. J. Lancaster, "Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies", *IEEE Trans. Microwave Theory Tech.*, vol. 48, pp. 1098 1107, 2000.
- [9] J. S. Hong, "Microstrip tapped line filter design", IEEE Trans Microwave Theory Tech., vol. 27, pp. 44 45, 1979.