화재로 인한 서해대교 케이블의 안전성 예측

Safety Estimation of a Cable-Stayed Seohae Grand Bridge due to a Fire

류봉조†·민정기*·김종호**·오부진***·김효준**** B. J. Ryu, J. G. Min, J. H. Kim, B. J. Oh and H. J. Kim

1. 서 론

서해대교의 사장 케이블은 높은 탄성계수와 극한강도와 피로강도가 강한 아연도금 강연선으로 되어 있고, 특히 평 행 강연성중에서도 고밀도 폴리에틸렌을 강연선 자체에 피 복시킨 제품을 사용함으로써 부식방지 효과를 훨씬 높인 케이블이다. 풍속, 인장, 안전성 평가가 검토가 된 것으로 사료되지만, 화재 시 케이블의 안정성 평가는 아직 알려진 바 없는 실정이다. 본 논문은 국내 교량 중 가장 긴 서해대 교의 화재 발생 시, 열-유동해석을 통해 사재 방재 파이프 케이블의 안전성을 검토하는데 있다.

2. 본 론

2.1 해석 모델

Fig. 1은 서해대교를 3차원 모델링한 도면으로, 주탑은 2 개이고 높이는 182m이며 주탑 간 거리는 420m이다. (a)는 서해대교 전체의 1/4모델이며, (b)는 열-유동해석을 수행하 기 위한 (a)의 1/4 대칭 모델이다.

Fig. 1 3-dimensional modelling for Seohae grand bridge.

†	교신저자 : 한밭대학교 기계공학부
	E-mail : bjryu701@hanbat.ac.kr
	Tel: (042) 821-1159, Fax: (042) 821-158

```
* 국토관리청
```

```
** 한밭대학교 대학원 기계설계공학과
```

```
*** 충남대학교 대학원 기계설계공학과
```

```
**** 강원대학교 기계공학과
```

2.2 경계조건 및 물성치

경계조건과 관련하여, 교량 주변 공기층의 외부유동으로 인하여 케이블에서 전도가 이루어지는가를 계산하기 위하여 외부유동 해석을 수행하였으며, 주변 온도 20℃의 환경 복 사를 고려하였고, 고체부분의 열전도를 고려하였다. 또한 가 열과정에 의하여 생기는 유체의 밀도변화 때문에 일어나는 유동현상인 자연대류를 고려하기 위하여 자연대류에 영향을 미치는 요인 중 하나인 중력을 적용하였으며, 유동장은 정 상 상태의 층류와 난류 유동으로 가정하였다. 열원 및 대상 체 표면에 대해서는 흑체 조건을 사용하여 각각의 재료에 따른 방사율을 적용하였다.

Table 1은 교량의 3차원 모델을 구성하는 각각의 재료에 대하여 상온에서의 열적 물성치를 나타내고, Table 2는 상 온에서의 발열체 및 대상체를 구성하는 부품의 방사율을 나 타내고 있다. 실제 해석에서 각각의 물성치는 온도 의존 데 이터를 사용하였다.

해석상의 열원은 실제 일반적인 화재에서의 온도값인 800℃ 로 대형버스(12m×2.4m×3.9m)와 트럭(14.5m×2.5m×3.7m) 에 일정한 온도를 부여하여 해석을 수행하였다. 해석조건은 Table 3에 나타나 있다.

F - F						
Materials	Specific weight (J/kgK)	Thermal conductivity (W/mK)	Melting point [°C]			
Stainless steel	600	26.6	1440			

0.461

1.37

129

1796

8800

Table 2 Emission rate of a heating element and an object.

Object	Emission rate	
Stainless steel pipe	0.074	
Heat source	0.6 ~ 0.7	

HDPE

Concrete

Condition Cases	Temperature of a heating source	Distance between heating source and protective guard, D [m]	Wind velocity [m/s]
Case 1	800℃	0	0
Case 2	800°C	0	z 5
Case 3	800℃	0	x-y-z 5
Case 4	800℃	1	0
Case 5	800℃	1	z 5
Case 6	800℃	1	x-y-z 5

Table 3 Analysis condition for various cases.

2.3 CFD해석 기법

본 논문에서는 열-유통 해석을 수행하기 위하여 상용 CFD 코드인 COSMOSFloWorks를 사용하였으며, 또한 난 류 모델로서 표준 모델을 방정식내 대류항의 계산을 위하여 상류차분도식을 사용하였다. 수렴조건으로 각 셀에 대한 운 동량유수의 합 및 연속방정식의 유수의 합이 모두 10⁻³이하 로 조건을 설정하였다.

3. 결과 및 고찰

해석결과 HDPE pipe를 제외한 다른 재료들은 전반적으 로 표면 최고온도가 용융점보다 훨씬 낮은 온도로 도출되었 다. Fig. 2는 각각의 해석 조건에 따른 케이블 단면 온도 분포도이다. Table4는 각각의 해석 조건에 대한 열-유동해 석 결과 값이다.

(c) case 3

(d) case 4

Fig. 2 Temperature distributions of cable sections due to analysis conditions.

Table 4 Min. and Max. temperatures of objects in case of 800℃ heating source.

Casas	Object	Temperature	
Cases		Min. value	Max. value
	Wire	20.0432	315.364
Case1	HDPE pipe	20.0401	302.737
	SS pipe	20.0365	322.687
	Wire	20.0497	272.826
Case2	HDPE pipe	20.0514	263.592
	SS pipe	20.0486	276.469
	Wire	20.0599	160.397
Case3	HDPE pipe	20.0579	155.969
	SS pipe	20.0295	170.059
	Wire	20.0777	250.019
Case4	HDPE pipe	20.0791	237.296
	SS pipe	20.0769	255.693
	Wire	20.0487	212.247
Case5	HDPE pipe	20.0502	206.953
	SS pipe	20.0469	220.497
	Wire	20.0493	149.654
Case6	HDPE pipe	20.0475	143.447
	SS pipe	20.0432	156.164

4. 결 론

본 논문에서는 화재가 서해대교 사장 케이블의 안정성에 미치는 영향에 대해서 열원의 온도를 800℃로 가정한 열-유동 해석을 수행하였으며, 이를 통하여 얻은 결론은 다음 과 같다.

- (1) Stainless steel pipe의 경우는 표면 최고온도가 용융 점보다 훨씬 낮으므로 문제가 없을 것으로 판단된다.
- (2) HDPE pipe의 경우는 표면 최고온도가 용융점을 상당 히 넘어서므로, HDPE pipe를 보호하려면 신속한 화재 진압이 필요하다고 판단된다.
- (3) Wire의 경우 표면 최고온도가 용융점보다 훨씬 낮으 므로 문제가 없을 것으로 판단된다.