교량바닥판의 동적 변형률 응답을 이용한 민감도 기반 BWIM 시스템

Sensitivity-based BWIM system using dynamic strain responses of bridge deck plate 김병화† · 박민석* · 여금수** · 김수진**

Byeong Hwa Kim, Min Seok Park, Keum Soo Yeo and Soo Jin Kim

1. 서론

Moses 기반 BWIM 시스템⁽¹⁾은 교량의 동적 응답 으로부터 추출된 정적 모멘트 영향선을 이용하여 통 과차량의 축하중을 추정한다. 그러므로 BWIM 시스 템의 오차는 영향선의 정확성에 크게 의존된다. 그 러나 현재까지 영향선을 현장계측을 통하여 체계적 으로 추출하기 위한 알고리즘의 소개는 찾아보기 힘 들다. 또한, 거더의 응답을 이용하는 BWIM 시스템 은 장경간 교량에 적용하기 어렵고, 총중량 추정에 대한 정확도는 높으나, 개별 축중에 대한 추정 정확 도는 매우 낮다. 상기 언급한 Moses 기반 BWIM 시 스템의 단점들을 해결하기 위하여, 본 연구에서는 현장 실험을 통하여 영향선을 추출할 수 있는 체계 적인 알고리즘을 소개하고, 교량 거더의 응답 대신 상판 슬래브의 응답을 이용하는 방법을 제안한다.

2. 본 론

2.1 영향함수 및 축하중의 추출

모멘트 영향함수는 다음 식(1)을 통하여 추출할 수 있다⁽²⁾.

$$\mathbf{I}_{\mathrm{N}} = \mathbf{\Gamma}_{\mathrm{ww}}^{-1} \, \mathbf{\gamma}_{\mathrm{wM}^*} \tag{1}$$

여기서, **Γ**_{ww}는 γ_{ww}(**p**-**k**) 요소를 갖는 (2N-1)×(2N-1) Toeplitz 행렬이고, γ_{wM*}는 γ_{wM*}(**p**) 요소를 갖는 (2N-1)×1 상호상관 벡터이다.

축하중 벡터는 다음 식 (2)을 통하여 추출할 수 있다⁽²⁾.

$$\mathbf{w}_{\mathrm{N}} = \left[\mathbf{\Gamma}_{\mathrm{II}}^{\mathrm{T}} \mathbf{\Gamma}_{\mathrm{II}}\right]^{-1} \mathbf{\Gamma}_{\mathrm{II}}^{\mathrm{T}} \mathbf{\gamma}_{\mathrm{IM}^{*}}$$
(2)

여기서, **Γ**_{II}은 γ_{II}(**p**-**k**) 요소를 갖는 (2N-1)×L 행렬 이고, γ_{IM*}은 γ_{IM*}(**p**)요소를 갖는 (2N-1)×1 상호상관 벡터이다.

2.2 재하위치의 추출

인식하고자 하는 변수들을 갖는 L×1 벡터 U를 다음 과 같이 정의하자.

$$\mathbf{U} \equiv \begin{bmatrix} \mathbf{s}_1 & \cdots & \mathbf{s}_L \end{bmatrix}^{\mathrm{T}} \tag{3}$$

여기서, s_j는 j번째 재하위치를 나타낸다. 식 (10)의 인식변수벡터를 가정하면, 대응되는 축하중은 계측 모멘트 M(n)*로부터 추출할 수 있다. 그러면 모멘트 영향함수 {I(n)}는 식 (1)을 이용하여 추출되고 축하 중은 식 (2)을 이용하여 추출 될 수 있다. 다음은, 추출된 영향함수와 축하중을 조합하여 모멘트 함수 를 추정한다. 그러면 추정된 모멘트 함수는 계측 모 멘트 함수와 동일하여야 한다. 따라서, 최적화를 위 한 목적함수 벡터(objective vector)는 N×1 계측 모멘 트 벡터로 정의하자.

모멘트 함수는 재하위치의 함수이므로 k번째 모멘 트의 변화는 다음과 같이 근사할 수 있다.

$$\delta M(\mathbf{k}) = \sum_{j=1}^{L} \frac{\partial M(\mathbf{k})}{\partial U_j} dU_j$$
(4)

여기서, U_j는 인식변수벡터 U의 j번째 요소이다. 식 (4)은 다음과 같이 보다 간단하게 정의할 수 있다.

$$\mathbf{z} = \mathbf{F} \, \boldsymbol{\alpha} \tag{5}$$

여기서, N×1 벡터 z는 k번째 모멘트수의 변화를 나 타내며 다음과 같이 정의되었다.

 ⁺ 교신저자; 경남대학교 토목공학과 조교수, 정회원
 E-mail : bhkim@kyungnam.ac.kr
 Tel : (055) 249-2667, Fax : (0505)999-2165

^{*} 한국도로공사 도로교통기술원 책임연구원 ** 경남대학교 토목공학과 석사과정

$$\mathbf{z} = [\delta \mathbf{M}(1) \quad \cdots \quad \delta \mathbf{M}(\mathbf{N})]^{\mathrm{T}}$$
(6)

L×1 벡터 α는 인식변수의 변화를 나타내며 다음과 같이 정의되었다.

$$\boldsymbol{\alpha} = [\mathrm{d}\mathrm{U}_1 \quad \cdots \quad \mathrm{d}\mathrm{U}_\mathrm{L}]^\mathrm{T} \tag{7}$$

그리고, N×L 벡터 F는 재하위치에 대한 모멘트의 민감도로써 다음과 같이 나타낸다.

$$\mathbf{F} = \begin{bmatrix} \frac{\partial M(1)}{\partial U_1} & \cdots & \frac{\partial M(1)}{\partial U_L} \\ \vdots & \ddots & \vdots \\ \frac{\partial M(N)}{\partial U_1} & \cdots & \frac{\partial M(N)}{\partial U_L} \end{bmatrix}$$
(8)

반복법을 이용하여 민감도 방정식 (5)의 해를 구하 면 축하중 및 재하위치를 동시에 추출할 수 있다.

3. 현장실험

제안된 축하중 인식 알고리즘은 서울과 인천국제 공항을 연결하는 신공항고속도로에 건설된 영종대교 상판 슬래브의 BWIM 시스템 설치를 위한 주행실험 결과에 대하여 적용하였다. 시험차량은 Table 1 과 같 이, 3 축 공차와 4 축 만재 트럭을 사용하였다.

Table.1 Measured static axle weight of the calibration trucks

Wheel axles	Three axle truck (kN)	Four axle truck (kN)
First axle	48.608	89.572
Second axle	73.206	80.654
Third axle	70.756	90.846
Fourth axle	-	90.356
Gross weight	192.570	351.428

Table 2 는 총 8 회의 주행실험 조건과 추정결과를 나타낸다. Fig.1 은 Test. No.1 에 대하여 제안기법의 수렴된 모멘트와 계측 모멘트의 비교를 나타내고 있 다. 추정된 모멘트와 계측된 모멘트는 매우 일치하 는 것을 알 수 있다. 즉, 제안 알고리즘은 현장 여건 에 매우 효과적이다.

4. 결 론

실험결과로부터 적어도 다음의 세 가지 결론에 이 른다. 첫째, 제안된 영향함수 추출 알고리즘은 현장 여건에서 매우 체계적이고 효과적이다. 둘째, 바닥판 슬래브의 응답을 이용하여 개별 축하중 및 재하위치 추출하는 민감도기반 시스템 인식 알고리즘은 Fig.1 에서 확인된 것처럼, 현장 여건에서 매우 실용적이 고 기존에 거더를 이용한 방법보다 정확하다. 셋째, 제안된 축하중 인식 알고리즘의 정확도 개선을 위해 서는, 향후 2 차원 영향면(influence surface)을 이용하 는 확장연구가 기대된다.

Table.2 Estimated axle weight of calibration trucks

Test	Vel.	Vel. Wheelbase(m)	Estimated Axle Weight (kN)				Gross		
No.	(Km/h)	First~ Second	Second~ Third	Third~Fo urth	First	Second	Third	Fourth	Weight (kN)
1	69.36	3.36	1.21	-	50.53 (3.96)	71.45 (-2.40)	76.34 (7.89)	-	198.32 (2.98)
2	73.67	3.32	1.21	-	44.32 (-8.83)	66.31 (-9.42)	69.81 (-1.34)	-	180.43 (-6.30)
3	71.17	3.37	1.20	-	51.00 (4.92)	70.51 (-3.69)	79.43 (12.26)	-	200.93 (4.34)
4	70.89	3.41	1.17	-	50.77 (4.44)	72.22 (-1.35)	81.76 (15.56)	-	204.75 (6.32)
5	71.45	1.64	3.00	1.16	81.99 (-8.47)	78.49 (-2.68)	87.98 (-3.15)	98.98 (9.54)	347.44 (-1.13)
6	78.49	1.66	3.00	1.18	83.23 (-7.08)	78.95 (-2.11)	80.70 (-11.17)	93.94 (3.97)	336.82 (-4.16)
7	77.48	1.65	3.03	1.16	86.02 (-3.97)	82.47 (2.26)	82.07 (-9.66)	96.86 (7.20)	347.42 (-1.14)
8	75.66	1.64	3.02	1.15	88.62 (-1.06)	82.56 (2.36)	95.89 (5.55)	103.89 (14.98)	370.96 (5.56)

Fig. 1 Predicted moment sequence in Test No.1: (a) Sensor B1; (b) Sensor B2.

후 기

이 논문은 2009 년 정부(교육과학기술부)의 재원으 로 한국연구재단의 지원을 받아 수행된 연구임 (2009-0072212)

참고문헌

- (1) Moses, F., 1979, Weigh-in-Motion System Using Instrumented Bridges, *Transportation Engineering Journal*, ASCE, 105, TE3, pp.233~249.
- (2) Kim, B.H.,Kim, S.J.,Yeo, K.S.,Park, M.S.,Park, H.G., 2009, "Identification of influence line and axle loads of moving vehicle using dynamic responses of bridge deck plate", Proceeding of the Korea Institute for Structural Manintenance Inspection, Seoul, Vol.13, No.2.,pp. 169~172.