판에 병치된 박막압전소자의 전기역학적 신호를 이용한 무기저 기법의 이해

Understanding a Reference-Free Impedance Method Using Collocated Piezoelectric Wafers.

김은진* · 손훈** · 박현우[†]

Kim, Eun Jin · Sohn, Hoon · Park, Hyun Woo

1. 서론

센서 및 IT 기술의 발달로 금속판이나 합성판에 발생한 미세손상을 감지하기 위해 구조물과 능동소자간의 전기역 학적 상호작용을 이용한 구조물 건전성 감시(structural health monitoring)에 대한 연구가 활발히 수행되고 있다⁽¹⁾. Lead zirconate titanate 로 만들어진 박막 형태의 압전소자 (Piezoelectric transducer; 이하 PZT)는 미세 손상에 민감 한 고주파 동적 신호를 발생시키거나 응답을 측정하기위해 대상구조물에 특별한 손상없이 표면에 쉽게 부착함으로 건 전성 감시를 위한 도구로 각광을 받고 있다⁽¹⁾. 이러한 PZT 에 의해 측정되는 전기역학적 신호(Electro Mechanical Signature; 이하 EMS)는 판과 같은 구조물의 손상감지에 큰 잠재력을 가지고 있다. 기존의 임피던스와 같은 EMS 를 이용한 손상 판별 기법에서, 손상 전 구조물의 임피던스 (기저신호: Baseline impedance signal)를 현제상태 구조물 의 임피던스와 비교함을 통해서 손상이 판별되었다⁽¹⁾. 그러 나, 실제 구조물에서 측정된 EMS 비교는 환경 변화나 측 정조건의 변화에 상당한 영향을 받으며, 손상이 없는 구조 물을 손상구조물로 진단하는 신호적인 오류가 종종 발생한 다⁽²⁾. 이러한 결점을 보완하기 위해 기저 정보에 의존하지 않는 무기저(Referenc-free)에 대한 연구가 수행되어지고 있다⁽³⁾. 최근 무기저를 위한 연구로 손상위치를 통과할 때 발생하는 모드 변환된 램파(Lamb wave)를 PZT 의 극성을 이용하여 순간적으로 추출하는 방법이 있다⁽³⁾. 하지만, EMS 를 사용한 무기저 접근은 연구 실적이 거의 전무하다. 본 연구에서는 기저 EMS 신호와의 직접적인 비교가 필요 없고, 램파의 전파와 구조물의 모드조화운동 이론에 기초한 새로운 개념의 무기저 진단기법으로 판과같은 구조물에 손 상감지룰 수행하였다. 먼저, 스펙트럼 요소법(Spectral Element Method ; 이하 SEM)을 이용하여 주파수 영역에 서 한 쌍의 병치된 PZT 와 구조물의 상호작용에 의한 EMS 를 파악하기 위해 정상상태 동적해석(steady-state dynamic analysis)을 수행하였다⁽⁴⁾. 그리고, 손상에 의해

+ 교신저자; 정회원, 동아대학교 토목공학부 조교수
E-mail : hwpark@dau.ac.kr
Tel :(051)200-7630, Fax :(051)201-1419
* 동아대학교 토목공학부 박사과정
** 한국과학기술원 토목환경공학과 부교수

발생된 모드변환 EMS 를 병치된 PZT 의 극성에 기인한 신 호분해 기법을 적용하여 추출하고, 분해된 모드변환 EMS 가 손상의 위치와 크기에 따라 받는 영향을 추가로 분석하 였다.

2. 이론적 배경

기존 연구들에서 판의 표면을 따라 전파하는 S₀ 와 A₀ 로 모드를 가지는 램파가 균열과 같은 불연속 지점을 만나면 램파의 일부는 모드변환(Mode Conversion)이 발생한다. 그림 1 은 이러한 과정을 의미하는 간략화 모델과 램파 모 드신호(Lamb wave Mode Signal; 이하 LMS)의 상대적인 도착 시간과 위상을 펄스-에코(Pulse-echo)원리로 간략하 게 나타낸 것이다⁽⁵⁾. LMS_{AA} 와 LMS_{BB}는 동일 PZT 에서 가 진과 탐지를 수행하여 얻은 결과이며, LMS_{AB/BA} 는 PZT A(B)에서 가진, PZT B(A)에서 탐지한 결과이다. 가진과 탐 지 PZT 의 극성에 따른 각각의 위상정보에서 LMS_{AB} 와 LMS_{BA}는 상반성이 성립하여 항상 동일하다.

Fig. 1 Comparison of relative phase information among $LMS_{AA},\,LMS_{BB}$ and $LMS_{AB/BA}.$

이들 측정 신호(LMS_{AA}, LMS_{BB}, LMS_{AB})를 식(1)과 같은 대수 방정식으로 표현할 수 있으며, 역행렬을 통한 간단한 계산으로 램파의 S₀와 A₀모드와 관련된 LMS_{S0}, LMS_{A0} 외 에 손상을 의미하는 변환모드 LMS_{MC}를 얻을 수 있다.

$$\begin{bmatrix} LMS_{S_0} \\ LMS_{MC} \\ LMS_{A_0} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} LMS_{AA} \\ LMS_{BB} \\ LMS_{AB} \end{bmatrix}$$
(1)

그림 2 는 PZT 에서 발생한 램파가 캔틸레버 보의 정상 상태 동적 응답을 어떻게 구성하지 간략히 나타낸 것이다. 그림 2(a)와 (b)는 한 쌍의 PZT 가 병치된 캔틸레버보와 15 차 고유모드 형상을 나타낸 것이다. 그림 2(b)의 15 차 고유 주파수(f=26.124kHz)를 조화 입력전압으로 PZT 에 가하면, 그림 2(c), (d)와 같은 램파의 전파와 중첩과정이 발생하며, 그림 2(e)는 중첩된 램파가 정상상태를 거쳐 공 진상태에 이른 결과로 그림 2(b)와 동일함을 알 수 있다. 결국, 주파수 영역에서 구한 EMS는 시간영역의 램파가 공 진상태에 이르렀을 때 나타나는 신호임을 알 수 있다.

Fig. 2. The propagating Lamb waves to be resonant standing wave on a cantilever beam with collocated PZTs

이러한 시간영역과 주과수 영역 신호들의 상관관계를 통 해 LMS 로 유도된 식(1)과 유사한 EMS 를 사용한 식(2)를 유도할 수 있다.

$$\begin{bmatrix} EMS_{S_0} \\ EMS_{MC} \\ EMS_{A_0} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} EMS_{AA} \\ EMS_{BB} \\ EMS_{AB} \end{bmatrix}$$
(2)

수치 및 실험 예제

수치해석에 사용된 기저보(200mm ×10m m×3mm)는 알루미늄(E=70GPa, =0.33)을 사용하였고, 보의 구조 감쇠 비를 0.5%로 적용하였다. 그리고, PZT (10mm×10mm× 0.507mm)는 Piezo 사의 PSI-5A4E⁽⁶⁾ 재질을 사용하였 다. 그림 3 의 손상 전·후의 2 차원(이하 2D) 수치 해석 모델에 SE 해석을 이용하면 각각 3 개의 EM 신호(EMS_{AA}, EMS_{BB}, EMS_{AB/BA})를 구할 수 있다. 이들 신호를 식(2)에 대입하면 그림 3 과 같이 분해된 EM 신호(EMS_{AO}, EMS_{SO}, EMS_{MC})를 각각 손상 전·후 모델에 대하여 얻을 수 있다. 특히, EMS_{MC} 는 손상전 모델에서는 신호가 발생하지 않지 만, 손상된 모델에서는 해석 모델의 고유주파수 위치에서 신호가 발생한다. 따라서 EMS 를 이용한 무기저 손상진단 이 가능함을 알 수 있다

(a) Decomposed signals in the Intact (b) Decomposed signals in the Damage case.

Fig.3 Signal decomposition of the EMS obtained from collocated PZTs on an intact and a damaged cantilever beam.

그림 4 는 EMS 를 활용한 무기저 손상 진단의 손상의 정도와 위치의 변화에 따른 추가적인 해석을 수행한 결과 이다. 그림 4(b)에서 손상의 위치(x)는 100mm 로 고정하고 손상의 깊이(d)를 0 에서 70% 까지 변화시켜 0-30kHz 까 지의 EMS_{MC} 신호를 비교한 결과이다. 그림 4(d)는 그림 4(b)의 결과 중 4-8kHz 까지 확대한 결과로 손상이 심해짐 에 따라 EMS_{MC} 신호의 크기가 커지나 손상이 심할수록 강 성이 감소하므로 공진 주파수는 작아짐을 알 수 있다. 그림 4(c)는 손상의 위치를 각각 80, 100, 150mm 로 변화시키 고, 각 위치마다 0 에서 70%까지 손상을 고려한 EMS_{MC} 신호의 RMS 값을 구하였다. 여기서, RMS 값에 사용된 EMS_{MC} 신호의 주파수 대역은 0-30kHz 까지를 사용하였다. RMS 값을 통해서도 손상이 심해짐에 따라 RMS 값이 커짐 을 알 수 있다. 현제 구조물의 모드형상과 손상의 위치나 PZT 의 위치와의 상관관계를 연구하는 중에 있다.

(c) The RMS values of the decomposed (d) Decomposed $\rm EMS_{MC}$ due to mode $\rm EMS_{MC}$ (d/H) conversion (4-8kHz) Fig. 4 Decomposed $\rm EMS_{MC}$ and their RMS values due to mode

0.3 0.4 0.5

conversion induced by a notch with varying depths and locations.

후 기

이 논문은 정부재원(과학기술부 방사선 기술개발 사업 비)으로 한국과학재단의 지원을 받아 연구되었습니다. (M20703000015-07N0300-01510).

참 고 문 헌

(1) Park G, Sohn H, Farrar CR, Inman DJ., "Overview of piezoelectric impedance-based health monitoring and path forward.", The Shock and Vibration Digest 35, 451-463 (2003).

(2) Sohn, H., "Effects of Environmental and Operational Variability on Structural Health Monitoring," Philosophical Transactions of the Royal Society A 365(1851), 539-560 (2007).

(3) Kim, S. B. and Sohn, H., "Instantaneous Reference-free Crack Detection Based on Polarization Characteristics of Piezoelectric Materials," Smart Materials and Structures 16(6), 2375-2387 (2007).

(4) Park, H.W., Lim, K. L., Kim, E. J. and Sohn, H., "Spectral element formulation for dynamic analysis of a coupled piezoelectric wafer and beam system," Journal Computers & Structures, in press (2010).

(5) Rose, J. L., [Ultrasonic waves in solid media], Cambridge University Press, (1999).

(6) Piezo Systems, Inc. (http://www.piezo.com/)