공기스프링과 압전구동기를 이용한 능동 방진 모듈의 설계 방법

Design Method of Active Vibration Control Module using Air Spring and Piezo Actuator

임경화†·안채헌*·이규섭**

Kyung-Hwa Rim, Chae-Hun An and Gyu-Seop Lee

1. 서 론

반도체 및 디스플레이 산업 등 초정밀 가공, 측정이 필요 한 산업 분야에서 진동 차단을 목적으로 초정밀용 방진 시 스템(Vibration Isolation System)에 대한 연구가 활성화 되고 있다. 공기스프링이 낮은 강성으로 큰 하중을 지지 할 수 있지만 공기의 압축성과 고무의 비선형 특성으로 인하여 초정밀 제어는 매우 까다로운 편이다. 또한 압전구동기 (Piezo Actuator)는 높은 주파수 대역폭까지 정밀 제어가 가능하지만 변위량이 매우 작을 뿐 아니라 강성이 크기 때 문에 방진 영역 측면에서 불리하다. 본 논문에서는 공기스 프링에 압전구동기를 부착하여 능동 방진 모듈을 설계하는 방법을 연구하고자 한다. 두 장치간의 강성 차이로 발생하 는 문제점을 해결하기 위한 연결 방법에 관하여 연구하였다.

2. 방진 모듈의 설계

2.1 직렬형 방진 모듈의 분석

공기스프링은 낮은 강성을 가지지만 비선형 특성에 의해 정밀 위치 제어 구현이 매우 어려우므로 Fig. 1과 같이 초 정밀 위치제어가 가능한 압전구동기를 도입하여 이를 보완 한다. Fig. 1의 시스템은 2 자유도로 식을 간략화 하기 위 하여 감쇠를 무시하고 정적 전달함수행렬을 얻기 위하여 수 학적으로 모델링하고 전달함수행렬(Transfer Function Matrix)에 s=0을 대입하면 식(1)을 얻을 수 있다.

식(1)에서 정적상태에서 하중판(Load-plate)의 위치는 공 기스프링과 압전구동기의 강성의 조합으로 나타나며, 둘의 연성(Coupling)항은 압전구동기의 강성이 지배함을 알 수 있다. 일반적으로 압전구동기의 강성 k1이 공기스프링의 강 성 k2에 비하여 매우 크므로 연성 효과가 작을 것으로 예상 할 수 있다.

** (주)RMS Technology

Fig. 1 Structure of a active vibration control module

$$G_{old}(s)_{ij}\Big|_{s=0} = K_{ij} = \begin{bmatrix} \frac{1}{k_1} & \frac{1}{k_1} \\ \\ \frac{1}{k_1} & \left(\frac{1}{k_1} + \frac{1}{k_2}\right) \end{bmatrix}$$
(1)

따라서 실제 구현 시 압전구동기의 동작이 공기스프링을 지나 하중판에 전달되기는 매우 어렵다. 이는 시스템의 연 성효과에 관련된 것으로 MIMO시스템의 연성 관계를 파악 하는데 사용되는 Bistol이 제안한 RGA(Relative Gain Array)를 도입하였다. RGA는 한 자유도를 기준으로 다른 자유도의 입력이 없을 때와 자유도가 완전 제어(Perfect Control) 되었을 때 (일정한 출력을 가질 때)의 안정된 상 태 (Steady State)에서 출력의 비를 나타낸 것으로 식(2)와 같이 표현된다.

$$\Lambda = \begin{bmatrix} \lambda_{11} & \dots & \lambda_{1N} \\ \vdots & \ddots & \vdots \\ \lambda_{N1} & \dots & \lambda_{NN} \end{bmatrix} ,$$
$$\lambda_{ij} = \frac{K_{ij}\Big|_{f_m}}{K_{ij}\Big|_{x_n}} = \left(\frac{\partial x_i}{\partial f_j}\Big|_{f_m}\right) / \left(\frac{\partial x_i}{\partial f_j}\Big|_{x_m}\right), m \neq j; n \neq i$$
(2)

실험적 결과를 근거로 설정한 매개변수를 입력하면 이 시 스템의 RGA는 아래의 Aold와 같이 구해진다. RGA의 한 요 소 λ_{ij} 가 1 인 경우는 그 자유도가 완전 비연성임을 의미하 고 0.5인 경우는 완전 연성되었음을 의미한다. 또한 1보다

 ⁺ 교신저자; 한국기술교육대학교
E-mail : rim@kut.ac.kr
Tel:(041)560-1147, Fax:(041)560-1253

^{*} 한국기술교육대학교 대학원

$$\Lambda_{old} = \begin{bmatrix} 1.026 & -0.026 \\ -0.026 & 1.026 \end{bmatrix}$$

큰 값을 가지는 경우 다른 자유도가 일정한 출력을 가질 때 그 영향이 다른 자유도의 입력이 없을 때보다 작음을 의미 한다. 따라서 본 시스템은 두 자유도가 비연성 시스템에 가 까우며 하중판에 가해지는 압전구동기의 영향이 매우 작음 을 알 수 있다.

2.2 방진 모듈의 연성 특성 개선

기존의 직렬형 방진 모듈은 이미 시스템의 강성 행렬이 고정 되어 이의 연성 특성을 개선하기는 매우 어렵다. 따라 서 Fig. 2와 같이 튜닝 가능한 질량과 추가 스프링 (Additional Spring)을 채용한 3 자유도 직렬형 방진 모듈 의 구조를 제안한다. 본 시스템의 정적 전달함수 행렬은 식 (3)과 같다.

Fig. 2 Structure of a active vibration control module with additional spring

$$G_{new}(s)_{ij}\Big|_{s=0} = \begin{bmatrix} \frac{1}{k_1} & \frac{1}{k_1} & \frac{1}{k_1} \\ \frac{1}{k_1} & \frac{k_1 + k_2}{k_1 k_2} & \frac{k_1 + k_2}{k_1 k_2} \\ \frac{1}{k_1} & \frac{k_1 + k_2}{k_1 k_2} & \frac{k_1 + k_2 + k_3}{k_1 k_2 k_3} \end{bmatrix}$$
(3)

식 (3)에서 보는 바와 같이 정적 상태에서 하중판의 위치 는 모든 강성에 영향을 받는다. 또한 기존 시스템에 비하여 공기스프링과 압전구동기가 연성되었음을 알 수 있으며 추 가 강성 k1의 값을 튜닝함으로써 시스템을 디자인할 여유를 갖출 수 있다. 예를 들어 추가 강성 k1을 압전구동기의 강 성 k2와 같은 크기로 튜닝 할 경우 시스템의 RGA는 아래의 Anew와 같다. λ22는 1에 가까운 값을 가지게 된다. 이는 압 전구동기가 비연성되어 있음을 의미한다. 또한 λ33은 0에 가까운 값을 보이므로 정적상태에서의 하중판의 높이는 압 전구동기를 통하여 제어될 수 있음을 알 수 있다. Fig. 3은

$$\Lambda_{new} = \begin{bmatrix} 2.000 & -1.000 & 0 \\ -1.000 & 0.9997 & 1.0003 \\ 0 & 1.0003 & -0.0003 \end{bmatrix}$$

추가 스프링의 강성을 변경하며 정적 이득 및 고유진동수의 변화를 기존 시스템과 비교한 것으로 정특성 및 동특성이 모두 개선된 것을 확인할 수 있다. Fig. 4는 k₁/k₂가 0.5 일 때 FRF를 비교한 것으로 첫 번째 고유진동수가 감소하며 방진영역이 우수해지며 압전구동기의 동특성이 크게 개선된 것을 알 수 있다. 하지만, 이득이 증가함에 따라 고유 진동 영역에서의 이득 또한 같이 증가함을 알 수 있다.

Fig. 3 Effect of additional spring

4. 결 론

넓은 방진영역을 가지지만 정밀 제어가 어려운 공 기스프링과 정밀 제어가 가능하지만 강성이 높은 압 전구동기를 동시에 사용하여 효율성이 뛰어난 능동형 방진 모듈의 구조를 제안하였으며, 해석적으로 우수한 특성을 보였다.

후 기

본 논문은 교육과학기술부의 재원으로 한국연구재 단의 지원을 받아 수행된 광역경제권 선도 산업 인재 양성 사업의 연구 결과 입니다.