한국전기전자재료학회 2010년도 하계학술대회 논문집

Origin of Point Defects in AgInS₂ Epilayer

Obtained From Photoluminescence

Sanha You, Kwangjoon Hongt

Department of Physics, Chosun University, Kwangju 501-759, South Korea

Abstract: The AgInS₂ epilayers with chalcopyrite structure grown by using a hot-wall epitaxy (HWE) method have been

confirmed to be a high quality crystal. After the as-grown AgInS2/GaAs was annealed in Ag-, S-, and In-atmosphere, the

origin of point defects of the AgInS₂/GaAs has been investigated by using the photoluminescence (PL) at 10 K. The native

defects of VAg, VS, Agint, and Sint obtained from PL measurement were classified to donors or acceptors type

Key Words: AgInS₂, hot-wall epitaxy, point defects, Varshni's relation, photoluminescence

1. Introduction

Ternary chalcopyrite crystals are currently of technological interest since they show promise for application in the areas of

visible and infrared light-emitting diodes, infrared detectors, optical parametric oscillators, upconverters, and far infrared

generator In this paper, to estimate the predominant point defects of the as-grown AgInS2 through various heat-treatment,

we carried out measurements of the optical absorption and the PL spectra. Based on these results, we will discuss the

origin of native defects of the AgInS2.

2. Results and Discussion

The absorption and PL spectra of AgInS₂/GaAs epilayers grown by using HWE method were investigated. The energy

band gap obtained from the absorption spectra was well described by the Varshni's relation of E_g(T) = 2.1365 eV - (9.89 ×

10⁻³ eV)T²/(2930 + T). The free excitons of the lhx and hhx have found in the as-grown AgInS₂/GaAs and its splitting

energy gap between the lhx and the hhx was determined to be 109 meV. Also, the binding energy of the free exciton was

estimated to be 48.2 meV. The I₂ emission was confirmed to be related to the V_S or Ag_{int} generated by non-stoichiometric

composition. These defects were proved to be acted as donors. Therefore, these defects indicate one of the reasons why the

AgInS₂ grown is generally the n-type. At the same time, the binding energy of the donor-impurity was calculated to be

92.7 meV. The I₁ emission became the dominant peak in the AgInS₂/GaAs;S after the S-atmosphere treatment.

References

¹ L. Martinez Z., S. A. Lopez-Rivera and V. Sagred. Il Muovo Cimento 2, 1687 (1983)

† corresponding author: Kwangjoon Hong, e-mail:kjhong@chosun.ac.kr:, Tel:062-230-6637

Address: Department of Physics, Chosun University

- 377 -