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The research presented here represents a collaborative effort with the SFWMD on developing 

scenarios for future climate for the SFWMD area. The project focuses on developing 

methodology for simulating precipitation representing both natural quasi-oscillatory modes of 

variability in these climate variables and also the secular trends projected by the IPCC scenarios 

that are publicly available.  This study specifically provides the results for precipitation modeling. 

The starting point for the modeling was the work of Tebaldi et al that is considered one of the 

benchmarks for bias correction and model combination in this context. This model was extended 

in the framework of a Hierarchical Bayesian Model (HBM) to formally and simultaneously 

consider biases between the models and observations over the historical period and trends in the 

observations and models out to the end of the 21st century in line with the different ensemble 

model simulations from the IPCC scenarios. The low frequency variability is modeled using the 

previously developed Wavelet Autoregressive Model (WARM), with a correction to preserve the 

variance associated with the full series from the HBM projections. The assumption here is that 

there is no useful information in the IPCC models as to the change in the low frequency 

variability of the regional, seasonal precipitation. This assumption is based on a preliminary 

analysis of these models historical and future output. Thus, preserving the low frequency 

structure from the historical series into the future emerges as a pragmatic goal. We find that there 

are significant biases between the observations and the base case scenarios for precipitation. The 

biases vary across models, and are shrunk using posterior maximum likelihood to allow some 

models to depart from the central tendency while allowing others to cluster and reduce biases by 

averaging. The projected changes in the future precipitation are small compared to the bias 

between model base run and observations and also relative to the inter-annual and decadal 

variability in the precipitation.  

 

핵심용어 : Climate Change, Hierarchical Bayesian Model, Bias, Multi Model Ensemble(MME) 

 

1. INTRODUCTION 

 

The South Florida Water Management District faces many related challenges in assessing threats 

to future water supplies given the prospect of anthropogenic climate change. These include 

impacts due to changes in the timing and magnitude of rainfall, temperature and winds, and due 

to sea level rise. Prior work done by the SFWMD and others in the region has developed 
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downscaling capacity for rainfall simulations based on projections by General Circulation 

Models for different climate change scenarios, and has also investigated the possibility of 

integrating low frequency climate oscillations, such as El Nino Southern Oscillation and the 

Atlantic Multi-decadal Oscillation. An integrated approach for developing consistent and 

appropriate scenarios across precipitation and temperature that reflects both historical variability 

and trends and also the projections from the climate change models has not so far been attempted. 

Also, only a limited analysis of the biases and the uncertainty in the projections of these 

variables has been done. 

A number of products that provide scenarios for projected future climate change are available.  

The primary sources usually referenced are those related to the IPCC Climate Change scenarios 

under different assumptions of anthropogenic impacts in the 21st century used in General 

Circulation Models of the Ocean and Atmosphere (GCMs). Precipitation and temperature have 

been downscaled (often separately) to station or regional values using a variety of methods. 

Significant biases and uncertainties in these projections are found and have been documented. 

Some of these relate to the average and standard deviation of monthly or daily values, and 

schemes for bias correction and uncertainty reduction using model averaging have been 

developed. These need to be specifically evaluated for the SFWMD domain for this set of 

models.  

The Florida region has been shown to have persistent inter-annual and decadal modes of climate 

variability. Unfortunately, these are not captured very well by the current generation of GCMs. 

Prior work has shown how historical and paleo data can be used to simulate multi-scale rainfall 

variations for use with SFWMD. The extension of these methods to spatially and temporally 

consistent scenarios for precipitation and temperature is still needed. The objectives of the study 

were to provide climate change scenario with associated uncertainties, and extend the existing 

downscaling tools to simulations of seasonal rainfall using the climate change information that 

was derived through the Hierarchical Bayesian Model. 

 

2. METHODOLOGY 

 

Hierarchical Bayesian Multi-model Ensemble Model (HBMME) 

The observed seasonal rainfall are assumed to follow a Normal distribution, ),(~ 2σµNYobs , 

with mean(µ ) and standard deviation(σ ). The assumption of normal distributions is considered 

reasonable due to the aggregation over a season and over an area. In addition, quantile plots of 

observations and model data for each GCM against the theoretical normal distribution show 

normal distribution. To begin with, the time series is centered with )12/( += NTc  so that the 

intercept µ can be regarded as the mean value of the climate condition for present and future 

period. The parameter α refers to a linear trend that is to be derived from the observations. 

 

)),((~ 2

, σαµ TctNY tobs −+       (1) 

 

Next, we consider the representation of the observations by the IPCC GCMs. We consider an 

additive bias 
iB  and a multiplicative bias iγ in the ith GCM model: 

 

)γ),(B(~
2

, iitbase TctNY σαµ −++
     (2) 
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The prior distributions of the parameters for the base scenario model are specified as follows. 

The bias parameters are shrunk across the GCMs, to reduce potential sampling variability. The 

two levels of modeling consider a prior or uncertainty distribution for each parameter, and a non-

informative distribution for the prior associated with each hyper parameter. The hyper-

parameters Bµ , Bσ , γµ  and γσ  for the bias terms are introduced to shrink across the GCMs, and 

then these hyper-parameters that can be interpreted as the average bias across the GCMs and the 

associated variance.  

For the distribution of climate change, a mean shift ( µ∆ ) and a variance change( iλ ) are 

employed in the model. tfutureY , is treated as an observation in the model although tfutureY , is 

unobserved. This allows an estimation of the variance( fσ ) of the precipitation for the scenario 

period. tfutureY , can thus be estimated as a missing value in the Hierarchical Bayesian model. 

Moreover, the additive and multiplicative biases with the parameter i∆B  and iγ  can change 

between the control and scenario periods. Therefore, the bias, bias change and true change under 

climate change are combined into additive changes for the mean and a multiplicative change for 

the standard deviation, respectively. The equations for the final projection and the bias corrected 

projection for a particular model being combined is given as: 

 

)),-)(((~
22

, ftfuture TctNY σσααµµ ∆++∆+     (3) 
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Figure 1. Posterior densities for change in mean precipitation (∆µ), change in variance, trend (tr) 

and change in trend(∆tr) in the ASO and NDJ season.  

 

3. RESULTS AND DISCUSSION 

In this section, the posterior distribution the mean change ( µ∆ ), variance change ( fσ ) and trend 

change ( α∆ ) is illustrated and discussed for each season in South Florida. Figure 1 describes 

change in mean, variance and trend under climate change. For ASO season, there is a mild 

increase in mean, and the peak of the posterior distribution of µ∆  locates around 15mm. The 
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increased change in variability seems to be expected for ASO season given posterior distribution 

of fσ , but the peak of the posterior distribution is about 1.1 that means small tendency toward 

an increase in variability. There is no evidence for increase or decrease trend for control run and 

simulation period. For NDJ season, there is slight positive change in mean. The peak of the 

posterior distribution of µ∆  locates around 5mm. The change in variability doesn’t seems to be 

expected for NDJ season given posterior distribution of fσ , but the peak of the posterior 

distribution is about 1.0 that means no tendency toward an increase or a decrease in variability. 

The high probability of small negative trend for the control period was found by the posterior 

distribution of slope parameter α , but the change in trend α∆  becomes positive slope meaning 

that the negative trend will be no longer significant under climate change condition 
 
 

 

4. SUMMARY AND DISCUSSION 

A new model was introduced for simultaneously estimating the bias in the mean and variance, as 

well as the trends in these parameters in the observations and the IPCC scenarios for the 20th 

century and for the projected scenarios for the 21st century. The biases in the models for 

simulations for S. Florida are generally much larger than the uncertainty across models and also 

than the projections of future changes in these parameters (2031-2060). Modest increase or no 

changes in the mean and modest increases in the variability are identified shrinking across the 

models. The Hierarchical Bayesian Model developed simultaneously models the evolution of 

each model and uses information across models to shrink the biases to a common mean and 

variance. Thus, each model gets a posterior probability distribution for each bias term (mean and 

variance) and trend terms. However, the ensemble mean of the biases and of the future values for 

the mean and variance are also generated as a byproduct. In this respect, the model improves on 

the Bayesian delta approach model of Tebaldi et al. (2005).  The large biases identified are 

disquieting at first glance. Since they come from physically based models, one suspects that the 

physics is not adequate for describing the seasonal precipitation process for S. Florida. However, 

one expects downward biases in variability and potentially in the mean as the averaging spatial 

scale of the rainfall process increases, i.e., if the GCM grid boxes considered are much larger 

than the domain analyzed for the observations, then one can actually expect such differences. An 

investigation into multiscale spatial averaging of rainfall could indeed reveal whether the bias 

between the average seasonal precipitation for Division 4 is indeed significantly different from 

what would be expected from spatial averaging. If this is the case, then the bias correction as 

provided here is indeed quite reasonable and necessary.  In terms of applications and projections 

of climate change, the conclusion from the analyses presented here is that at least for seasonal 

precipitation, the projected changes in the mean and the variance are likely to be relatively small, 

especially compared to the bias and the parameter/projection uncertainty.  Consequently, it is 

still important to focus on the large dynamic range of inter-annual, decadal and inter-decadal 

variations in seasonal precipitation that are experienced in the region. 
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