# 식생된 홍수터 복단면 수로에서 수리특성에 관한 연구 A Study on Hydraulic Characteristics in Compound Channels with Vegetated Floodplains

# 김 종 우··윤 세 의<sup>··</sup> Kim, Jong-Woo·Yoon, Sei-Eui

#### 요지

본 연구는 식생지름에 따른 식생된 복단면 하천에서 수리특성에 관한 것이다. 또한 국외에서 개 발된 모형들의 차이점과 적용가능성을 조사하는 것이다. 연구결과로써 주수로의 유속은 식생밀도 증가에 따라 증가하는 동안 경계면마찰계수는 감소하다가 어느 식생밀도 지점부터 일정하였다. 하 상경사가 0.5 ‰와 식생직경이 12 mm일 경우 경계면마찰계수에 대한 Pasche 모형은 10.9 %, Bertram 모형은 12.4 %, Mertens 모형은 16.8 % 평균오차를 발생시켰다. 그러나 식생밀도가 증가 할수록 Nuding 모형의 오차가 증가함을 볼 수 있으며, 평균오차가 60.5 % 발생되었다. 주수로의 실측된 유속에 대한 Pasche 모형의 평균오차는 2.8 %, Mertens 모형의 평균오차는 8.3 %, Bertram 모형의 평균오차는 14.7 %, Nuding 모형의 평균오차는 11.8 %이다. 그러므로 Pasche 모 형은 실제 복단면 하천에 적용하기 위해 더 유용하다. Strickler 계수를 사용한 Bertram 모형은 다 른 모형보다 계산이 복잡하지 않고 측정된 마찰계수 및 유속값과 잘 일치한다.

#### 핵심용어 : 식생된 홍수터, 복단면 수로, 모형, 경계면마찰계수

### 1. 서론

하천식생은 생태하천복원에 있어서 중요한 역할을 하고 있으며, 생물의 다양성 확보, 친수공간의 형성, 호안안정, 오염물질 정화 등의 역할을 하고 있다. 그러나 홍수터의 식생은 항력의 증가로 인 해 새로운 이차흐름을 야기시키며, 이런 흐름저항은 유속 및 홍수위에 영향을 미친다. 따라서 식생 에 따른 하천의 흐름특성연구가 요구된다. 최근까지 다양한 하상저항, 식생의 특성(식생저항, 식생 밀도, 체적 및 투과성, 수목의 형태 등)을 충분히 고려하지 못했지만 하천의 강성식생에 대한 연구 가 상당한 발전을 이루어져 왔다.

국외에서 실시된 많은 연구중 복단면 수로(Pasche, 1984), 제방이 있는 소형수로(Bertram, 1985; Mertens, 1989), 단순수로(Nuding, 1991)에서 모형들이 개발되었다. 국내에서 윤세의 등(1997)은 식 생에 의한 수위변화에 관해 연구하였다. 여홍구 등(1994)은 식생에 따른 개수로 흐름저항 관하여 연구하였다. 강형식과 최성욱(2006)은 식재된 개수로에서 항력가중계수의 영향을 고려한 흐름특성 에 관한 연구에도 불구하고 실무에서 적용할 수 있는 모형의 개발이 요구된다.

그러므로 본 연구는 국외에서 개발된 모형들의 정확성을 실험실측데이터와 비교분석을 통해 검

<sup>\*</sup> 정회원·경기대학교 공과대학 토목공학과 강사·공학박사 E-mail : kimjw0426@nate.com

<sup>\*\*</sup> 정회원·경기대학교 공과대학 토목공학과 교수·공학박사 E-mail : syyoon@kyonggi.ac.kr

증하였으며, 복단면 실험수로에서 식생밀도와 하상경사에 따른 식생이 흐름에 미치는 영향을 분석 하였다.

#### 2. 하천식생에 따른 횡단면 유속분포

Felkel(1960)은 하천식생에 따라 유속과 유량이 변화됨을 제시하였다. 예를 들면, 식생이 존재하 지 않는 저면폭이 0.5 m와 수심이 0.35 m인 사다리꼴 하천에서 유량이 0.348 m<sup>3</sup>/s일 경우 사면의 식생 때문에 유량이 0.132 m<sup>3</sup>/s(37.9 %)로 감소되었다. 이때 최대유속은 식생이 없을 경우 0.348 m/s에서 식생을 할 경우 0.32 m/s로 약 38 % 감소되었다.



그림 1. 주 수로와 홍수터에서의 식생에 따른 경계면 영향과 분할단면의 유속분포(Rouvé, 1987)

그 이유는 하천식생구역 주변에서 흐름간에 격심한 혼합현상이 야기되며, 증가된 흐름저항은 난 류현상을 야기시킬 뿐만 아니라 에너지손실을 발생시킨다. 이때 유속분포는 식생에 따른 복단면 하천내의 식생구간과 비식생구간 사이를 4개의 구역으로 나눈다(Rouvé, 1987). 그림 1과 같이 횡 단면 형상이 식생 번무현황에 따라 현저한 유속차가 생긴다. 이는 식생구간과 비식생구간 같이 유 속차가 큰 경계에서 생기는 흐름의 운동량 전달이 야기되며, 그 결과 마찰저항이 증대된다. 특히 밀생한 식생이 광범위하게 존재한 좌측 Section I는 유속이 감소하며 주수로의 흐름에 영향을 받 지 않지만 Section II에서는 유속이 증가하며, 주수로 흐름의 영향 때문에 상호작용효과로 수목주 위에 난류현상이 발생된다. Section IIIa와 Section IIIb에서는 유속이 증가하며, 점점 홍수터식생의 영향이 감소된다.

#### 3. 식생의 영향에 따른 모형비교

본 연구에 적용된 모형들은 표 1과 같다. 경계면 마찰저항에 대해 개발된 모형들은 강성식생에 서 연구되었다. 표 1과 같이 Strickler의 저항계수 값 15 m<sup>1/3</sup>/s를 Bertram 모형에 사용하였다. 본 연구는 홍수터에 강성식생으로 식재된 복단면 수로에 대해 독일학술재단(Deutsche Forschugnsgemeinschaft)에서 실시한 실험(Rouvé, 1987)자료를 사용하였다(표 2). 표 2와 같이 식 생간의 간격은 4등급으로 나뉘며, 유속은 Darcy-Weisbach 공식으로 산정되었다. 유량은 연속방정 식으로 계산되었다.

| 丑 | 1. | 각 | 모형에 | 따른 | 경계면 | 마찰계수( <i>f</i> <sub>7</sub> ) |
|---|----|---|-----|----|-----|-------------------------------|
|---|----|---|-----|----|-----|-------------------------------|

| Models            | Interface friction factor( $f_T$ )                                                                                                                                                          | Property                                  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
|                   | $\frac{1}{\sqrt{f_T}} = -2.03 \cdot \lg \left( 0.072 \left[ \frac{b_m}{b_F/2} \right]^{1.07} \cdot \Omega \right),$                                                                         | Wide, compound<br>channel with floodplain |  |  |
| Pasche<br>(1984)  | $k_T = 0.793 \bullet r_{hy.T} \left(\frac{b_m}{b_F}\right)^{0.9} \bullet \Omega  \text{with}  \Omega = \left(0.07 \frac{a_{NL}}{a_x}\right)^{3.3} + \left(\frac{a_{NB}}{a_y}\right)^{0.95}$ |                                           |  |  |
|                   | $b_m = \frac{n_{vor}}{f_{vor}} (0.068e^{(0.56c_T)} - 0.056) \text{ with } c_T = v_{*T}/v_F = -3.27 \log \Omega + 2.85$                                                                      |                                           |  |  |
|                   | $\frac{1}{\sqrt{f_T}} = 2.035 \cdot \log \left( \frac{4 \cdot 3.046 \cdot r_{hy.T}}{k_T} \right), \ k_T = k_{T.V} + k_{T.I}$                                                                | Compact channel with                      |  |  |
| Bertram<br>(1985) | with $k_{T,V} = 1.2 - 1.5d_p$ and $k_{T,V,1} = \sqrt[3]{\frac{V_{L2}}{V_{L1}}} \cdot k_{T,L2}$ or<br>$k_{St.T} = \frac{26}{k_T^{1/6}}$                                                      |                                           |  |  |
|                   | $\sqrt{\frac{8}{f_T}} = 2.5 \cdot \ln\left(\frac{B_{III}}{k_T}\right) + 6.27,  k_T = c \cdot b_m + k_{TO} \text{ with}$                                                                     | Trapezoidal channel with bank vegetation  |  |  |
| Mertens<br>(1989) | $c = 1.0 - 0.3 \cdot (10^{-3} \cdot B_*) + 0.06 \cdot (10^{-3} \cdot B_*)^{1.5},$ $b_m = b_{II, \text{max}}/2,  B_* = \left(\frac{a_x}{d_p} - 1\right)^2 \left(\frac{a_y}{d_p}\right)$      |                                           |  |  |
| Nuding            | $f_T = 4 \left[ \log \left( \frac{v_{o.F}}{v_{o.V}} \right) \right]^2 \frac{r_{hy,V}}{h_T} \frac{b_m}{b_F}, b_F = \frac{A_F}{h_T},$                                                         | Partly vegetated rectangular channel      |  |  |
| (1991)            | $b_c = b_m = 3.2 \sqrt{a_x \cdot d_{p\cdot y}}  \text{or}  b_c = b_m = 0.15 h_T$                                                                                                            |                                           |  |  |

| 丑 | 2. | 상대폭에 | 따른 | 측정된 | 매개변수(b <sub>vor</sub> /b <sub>F</sub> =1; b <sub>\</sub> | <sub>/or</sub> =홍수터 | 폭) |
|---|----|------|----|-----|----------------------------------------------------------|---------------------|----|
|---|----|------|----|-----|----------------------------------------------------------|---------------------|----|

| Cross   | $I_s$ | $D_p$     | $d_p$ | $a_x$ | $a_z$ | $h_F$ | $b_m$ | $f_T$ | $V_F$ |
|---------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|
| section | (%)   | $(n/m^2)$ | (mm)  | (mm)  | (mm)  | (m)   | (m)   | (-)   | (m/s) |
| Ι       |       | 50        | 12    | 140   | 140   | 0.186 | 0.500 | 0.134 | 0.406 |
| II      | 0.5   | 100       | 12    | 70    | 140   | 0.185 | 0.280 | 0.365 | 0.365 |
| III     |       | 200       | 12    | 70    | 70    | 0.200 | 0.280 | 0.349 | 0.349 |
| IV      |       | 800       | 12    | 35    | 35    | 0.185 | 0.110 | 0.161 | 0.358 |
| Ι       |       | 50        | 12    | 140   | 140   | 0.175 | 0.500 | 0.141 | 0.536 |
| II      | 1     | 100       | 12    | 70    | 140   | 0.201 | 0.280 | 0.155 | 0.516 |
| III     |       | 200       | 12    | 70    | 70    | 0.189 | 0.280 | 0.173 | 0.504 |
| IV      |       | 800       | 12    | 35    | 35    | 0.200 | 0.110 | 0.163 | 0.514 |

## 4. 수리특성 분석결과

그림 2는 하상경사가 변화할 경우 표 1에 제시된 모형에 의해 계산된 경계면 마찰계수와 실측마 찰계수(표. 2)와의 비교분석을 나타낸다. 경계면 마찰계수는 하상경사(I<sub>s</sub>)가 0.5 ‰와 식생 밀도가 50 n/m<sup>2</sup>일 경우 Bertram(1985)이 제시한 모형은 -21.2 % 오차를 발생시켰으며, Mertens 모형은 15.0 %, Nuding 모형은 -49.0 %, Pasche 모형은 6.0 %이다(그림 2(a)). 또한 하상경사(I<sub>s</sub>)가 1 ‰ 과 식생밀도가 50 n/m<sup>2</sup>일 경우 Bertram 모형은 -29.7 % 오차를 발생시켰으며, Mertens 모형은 19.3 %, Nuding 모형은 -22.8 %, Pasche 모형은 0.2 %이다(그림 2(b)).



그림 3은 식생밀도와 하상경사에 따른 경계면 마찰계수에 대한 비교분석을 나타낸다. 경계면 마 찰계수는 식생밀도가 증가함에 따라 증가하다가 식생 밀도 200 n/m<sup>2</sup>지점부터 일정하였다.



그림 3. 식생밀도와 하상경사에 따른 경계면 마찰계수

그림 4는 주수로의 실측유속과 모의 결과 값과 비교를 나타낸다. 식생의 영향을 고려한 주수로 의 유속은 하상경사(I<sub>s</sub>)가 0.5 ‰과 식생밀도(*D<sub>p</sub>*)가 50 n/m<sup>2</sup>일 경우 Bertram(1985)이 제시한 모형 은 10.3 % 오차를 발생시켰으며, Mertens 모형은 7.3 %, Nuding 모형은 -8.7 %, Pasche 모형은 0.2 %이다(그림 4(a)).



그림 4. 하상경사에 따른 주수로의 유속에 대한 실측치와 계산치와 비교

하상경사(I<sub>s</sub>)가 1 ‰과 식생밀도가 50 n/m<sup>2</sup>일 경우 Bertram(1985)이 제시한 모형은 -4.8 %의 오 차를 발생시켰으며, Mertens 모형은 -5.2 %, Nuding 모형은 5.2 %, Pasche 모형은 1.3 %이다(그 림 4(b)).

#### 5. 결론

본 연구는 식재된 복단면 실험수로에서 하상경사와 식생밀도변화에 따른 수리인자변화를 분석 하였다. 또한 대표적인 항력접근법에 의해 연구된 Pasche, Bertram, Mertens, Nuding 모형을 제시 하였으며, 실험실측 데이터와 비교분석하였다. 그 연구결과는 다음과 같이 요약할 수 있다.

- (1) 경계면 마찰계수는 식생밀도가 증가함에 따라 증가하다가 식생 밀도 200 n/m<sup>2</sup>지점부터 일정 하였다.
- (2) Pasche 모형은 Bertram, Mertens, Nuding 모형들보다 경계면 마찰계수의 오차범위가 10.9%
  내에서 실측치와 잘 일치하였지만 Nuding 모형은 가장 큰 오차를 나타낸다.
- (2) 하상경사가 0.5 ‰ 일 경우 Pasche 모형의 유속평균오차는 2.8 %, Bertram 모형의 유속평균오 차는 14.7 %, Mertens 모형의 유속평균오차는 8.3 %, Nuding 모형의 유속평균오차는 11.8 %이다. Pasche 모형이 가장 잘 실측치와 일치하였다.

결론적으로 본 연구에 적용된 모형들 중 Pasche 모형이 가장 잘 식재된 복단면 하천의 흐름해 석을 할 수 있을 것으로 사료된다.

#### 참 고 문 헌

- 1. 강형식, 최성욱 (2006). 식생된 개수로에서 항력가중계수가 흐름에 미치는 영향 분석. 대한토목 학회논문집, 대한토목학회, 제26권 제5B호. pp. 529-537.
- 2. 여홍구, 박문형, 강준구, 김태욱 (2004). 개수로 내 식생구간의 흐름저항 및 흐름특성에 관한 실 험적 고찰. 한국환경복원녹화기술학회지, 제7권, 제6호, pp. 61-74.
- 윤세의, 정재욱, 김원화, 김환국 (1997). 수목이 있는 하도에서의 수위 예측. 한국수자원학회 학 술발표회논문집, 한국수자원학회, pp. 69-74.
- Bertram, H.-U. (1985). Ueber den Abfluss in Trapezgerinnen mit extremer Boeschungssrauheit. Mitteilungen aus dem Lichtenweiss-Institut fuer Wasserbau, TU Braunschweig. Heft 86.
- 5. Felkel, K. (1960). *Gemessene Abfluesse in Gerinnen mit Weidenbewuchs*. Mitteilungsblatt der Bundesanstalt fuer Wasserbau 15 (Karlsruhe), pp 34–51.
- Mertens, W. (1989). Zur Frage hydraulischer Berechnungen naturnaher Flieβgewsser. Wasserwirtschaft 79(4), pp. 170–179.
- Nuding, A. (1998). Zur Durchflussermittlung bei gegliederten Gerinnen. Wasserwirtschaft 88(3), pp. 130–132.
- Pasche, E. (1984). Turbulenzmechanismen in naturnahen Fliessgewaessern und die Moeglichkeiten ihrer mathematischen Erfassung. Rheinisch-Westflaelische Technische Hochschule Aachen.
- 9. Rouvé, G. (1987). *Hydraulische Probleme beim naturnahen Gewaesserausbau*. Dtsch. Forschungsgemeinschaft(DFG), Weinheim, Germany.