Uncertainty Analysis for Parameters of Probability Distribution in Rainfall Frequency Analysis: Bayesian MCMC and Metropolis-Hastings Algorithm

강우빈도분석에서 확률분포의 매개변수에 대한 불확실성 해석: Bayesian MCMC 및 Metropolis-Hastings 알고리즘을 중심으로

  • Published : 2010.05.10

Abstract

수자원 계획에 있어서 강우 또는 홍수빈도분석시 주로 사용되는 확률의 개념은 상대빈도에 대한 극한으로 확률을 정의하는 빈도학파적 확률관점에 속하며, 확률모델에서 미지의 매개변수들은 고정된 상수로 간주된다. 따라서 확률은 객관적이고 매개변수들은 고정된 값을 가지기 때문에 이러한 매개변수들에 대한 확률론적 설명은 매우 어렵다. 본 연구에서는 강우빈도해석에서 확률분포의 매개변수에 대한 불확실성을 정량화하기 위하여 베이지안 MCMC 및 Metropolis-Hastings 알고리즘을 이용한 불확실성 평가모델을 구축하였다. 그리고 베이지안 MCMC 및 Metropolis-Hastings 알고리즘의 적용을 통하여 확률강우량 산정시 확률분포의 매개변수에 대한 통계학적 특성 및 불확실성 구간을 정량화하였으며, 이를 바탕으로 홍수위험평가 및 의사결정과정에서 불확실성 및 위험도를 충분히 설명할 수 있는 프레임워크 구성을 위한 기초를 마련할 수 있었다.