저속 및 고속 주행에서 안정영역을 갖는 3 segment leg 설계 연구

Design study of 3 segment leg with stable region at low and high speed running

*[#]권오석¹, 신동환¹, 김영식¹, 안진웅¹ *[#]O. S. Kwon(mesign@dgist.ac.kr)¹, D. H. Shin¹, Y. Kim¹, J. An¹ ¹대구경북과학기술원 공공원천기술연구센터

Key words : segment leg, self-stability, leg stiffness

1. 서론

기존의 연구[2][3]에서는 1 Segment Leg(SL)-일반적으로 spring mass model 이라고 하나 편의상 본 논문에서는 1SL 이라고 함-과 2SL 에 대한 running self-stable 영역에 대하여 연구하였다. 이상적으로는 running self-stable 영역에서 거동을 하게 되면 이동 에너지 비용[1]이 0 가 된다. 즉, 실제 주행에서는 에너지 손실분만을 보충하여 주면 된다는 것이다.

기존의 연구[2][3]의 연구결과는 1SL 은 상대적으로 고속주행에서 self-stable 영역을 가지고, 2SL 은 상대적으로 저속주행에서 selfstable 영역을 가짐을 밝혔다.

본 연구에서는 저속 및 고속 주행에서 selfstable 영역을 갖고자 하는데 목적을 두었고, leg 구조는 3SL 을 이용하였다. 본 논문에서는 1, 2SL 에 대한 기존의 연구결과[2][3]를 분석하고 이를 통해 저속 및 고속주행에서 self-stable 영역을 가질 수 있는 3SL 설계방향을 제시하고 이를 검증하고자 한다.

2. 저속 및 고속 주행에서 안정영역을 갖는 3SL 설계방향 제시 및 검증

본 논문에서 다루는 1,2,3SL 모델과 running 모델은 Fig. 1 과 같다.

기존의 연구[2][3]에서는 1SL 은 상대적으로 고속구간에서 안정한 touch down angle 범위가 넓으며, 안정한계최저속도가 높음을 밝혔다. 그리고 2SL 은 안정한계최저속도가 낮으며, 상대적으로 저속구간에서 안정한 touch down angle 범위가 넓음을 밝혔고, 또한 관절각도가 클수록 안정한계최저속도가 낮고, 상대적으로 더 저속구간에서 안정한 touch down angle 범위가 넓음을 밝혔다. 안정한 touch down angle 범위가 넓은 것은 안정성에 있어서 강인성을 가짐을 의미한다. 이와 같은 결과는 Table 1 의 해석결과로부터도 알 수 있다. 이와 같이 1SL 은 고속구간, 2SL 은 저속구간에서 안정한 touch down angle 범위가 넓은 이유는 Fig. 2 와 같은 강성(stiffness) 특성을 가지기 때문이다.

Fig. 1 (a) 1SL model m: point mass, K: linear stiffness, l₀: initial leg length, l: compressed leg length, α_0 : touch down angle, α : varied leg angle, F: leg force (b) 2SL model l₁, l₂: segment lengths, ϕ_0 : initial joint angle, ϕ : compressed joint angle, C: rotational stiffness (c) 3SL model l₁, l₂: segment lengths, ϕ_{12}^0, ϕ_{23}^0 : initial joint angles, ϕ_{12}, ϕ_{23} : compressed joint angles, C_{12}, C_{23} : rotational stiffnesses (d) running model, g: gravitational acceleration

- Fig. 2 1SL, 2SL($\phi_0 = 130^\circ, 150^\circ, 170^\circ$ and $l_1 = l_2$) and 3SL($R_c = 0.1645$ and $R_c = 0.7043$ where $R_c = C_{12} / C_{23}$ [5]) stiffness diagrams, x axis: normalized leg compression by initial leg length l_0 , y axis: normalized leg stiffness by reference stiffness $K_{10\%} = F_{10\%} / \Delta l_{10\%}$ where $\Delta l_{10\%} = 0.1l_0$ [2][3]
- Table 1 1SL, 2SL($\phi_0 = 130^\circ, 150^\circ, 170^\circ$ and $l_1 = l_2$) and 3SL self-stable regions, analyzed by using m = 80kg, $l_0 = 1m$, $y_{apex,0} = l_0$ and $\tilde{K}_{low}(=K_{10\%}l_0 / mg) = 40$ [2][3], $V_{x,apex,0}$ (unit: m/s), α_0 (unit: degree)

		<u> </u>		·					
	(a) 1SL			(b) 2SL- $\phi_0 = 130^\circ$			(c) 2SL- $\phi_0 = 150^\circ$		
	V _{x,apex,0}	$\alpha_{_0}$		V _{x,apex,0}	$\alpha_{_0}$		V _{x,apex,0}	α_0	
	20	26-54		17	36-46		13	41-48	
	15	46-60		16	32-51		10	38-65	
	10	58-65	1	15	30-54		8	54-70	
	5	72-73		10	48-65		5	70-76	
	3.5	75		5	71-74		3	79-80	
ľ				3	77.5		2.5	80.5	

(d) 2SL-	$\phi_0 = 170^\circ$		(e) 3SL-R _c = 0.1645			(f) 3SL- $R_c = 0.7043$		
V _{x,apex,0}	α_0		V _{x,apex,0}	α_0		$V_{x,apex,0}$	α_0	
8	70-74		20	24-41		19	35-38	
5	69-82		19	33-43		18	31-42	L
3	80-85		15	40-51		17	28-46	L
2	85		10	52-65		15	26-52	L
1.5	86.5		5	71-76		10	49-65	
			3	79		5	71-74	
			2.5	80.1		3	78	L

즉, 1SL 은 변형량이 큰 부분에서 상대적으로 큰 강성값을 가지고, 2SL 은 변형량이 작은 부분에서 큰 강성값을 가지며, 변형량이 10%이상에서는 작은 강성값을 가지기 때문에 위와 같은 결과를 얻게된다. 그리고 2SL 에서도 변형량이 10%이하에서 더 큰 강성값을 가지고, 10%이상에서 더 작은 강성값을 가지게 되면, 안정한계최저속도가 더 낮아지게 되고, 더 저속구간에서 안정영역이 넓어지게 된다. 따라서, 변형량이 작은 부분과 중간 부분에서는 2SL 의 강성특성을 가지고, 변형량이 큰 부분에서는 1SL 의 강성특성을 가지면, 저속 및 고속구간에서 안정영역을 가질 수 있을 것이다. 즉, Fig. 2 의 3SL과 같은 강성특성을 가지도록 3SL 을 설계하면, 저속 및 고속주행에서 안정영역을 가질 수 있을 것이다. Fig. 2 의 3SL 강성특성을 갖는 3SL 설계는 생체모방설계[4]와 구조적 안정성[5][6]을 고려하여 하였다. 그리고, 3SL-Rc=0.1645 가 3SL-Rc=0.7043 보다 더 저속구간 및 고속구간에서 안정영역을 가질 것으로 예상되며, 그 결과는 Table 1 에서 확인할 수 있다.

3. 결론

본 논문에서는 저속 및 고속 주행에서 selfstable 영역을 가질 수 있는 3SL 설계방향을 제시하고 이를 검증하였다.

후기

본 연구는 교육과학기술부 일반사업 연구비 지원에 의해 수행되었습니다.

참고문헌

- S. Collins, A. Ruina, R. Tedrake, and M. Wisse, "Efficient Bipedal Robots Based on Passive-Dynamic Walkers", Science, **307**, 1082-1085, 2005.
- J. Rummel and A. Seyfarth, "Stable Running with Segmented Legs", The International Journal of Robotics Research, 27, 919-934, 2008.
- J. Rummel, F. Iida, J. A. Smith and A. Seyfarth, "Enlarging Regions of Stable Running with Segmented Legs", IEEE International Conference on Robotics and Automation, 367-372, 2008.
- L. M. Day and B. C. Jayne, "Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae)", The Journal of Experimental Biology, 210, 642-654, 2007.
- A. Seyfarth, M. Günther and R. Blickhan, "Stable operation of an elastic three-segment leg", Biological Cybernetics, 84, 365-382, 2001.
- R. Blickhan, A. Seyfarth, H. Geyer, S. Grimmer, H. Wagner and M. Günther, "Intelligence by mechanics", Philosophical Transactions of the Royal Society A, 365, 199-220, 2007.