평면 3자유도 직렬형 순응기구를 이용한 위치/힘 동시 제어

Kinestatic Control using Planar 3-DOF Serial Type Compliance Device

*이주현¹, 홍만복², [#]최용제³

*J. H. Lee¹, M. B. Hong², [#]Y. J. Choi(yjchoi@yonsei.ac.kr)³ ¹연세대학교 대학원 기계공학과, ²국립 암센터, ³연세대학교 기계공학부

Key words : Compliance Device, Kinestatic Control, Stiffness Matrix, Compliance Matrix, Circular hinge

1. 서론

인간과의 접촉이 필수적인 요소로 작용하는 수 술용 로봇 및 각종 서비스 로봇의 요구가 급증함에 따라 순응성을 갖는 기구의 개발이 시급하다. 본 논 문에서는 원하는 강성을 만족하도록 설계된 평면 순 응기구를 바탕으로 로봇팔의 위치/힘 동시제어가 가능함을 보인다. 순응기구를 이용한 위치/힘 동시제어가 가능함을 보인다. 순응기구를 이용한 위치/힘 동시제어가 가능함을 보인다. 순응기구를 이용한 위치/힘 동시제어 연 구를 다룬다. 기존의 순응기구는 일반적인 조인트 연결부로 인한 오차가 크고 복잡한 형상으로 제작하 기 어렵다. 이러한 단점을 보완하기 위해 [5]에서 힌 지 조인트로 이루어진 매우 단순한 형상의 평면 3자 유도 직렬형 순응기구의 설계방법을 제시한다. 힌 지의 설계 방법은 [6]에서 처음 제시한다. 그후[7]에 서 힌지에 대한 더 자세한 내용을 다룬다.

2.평면 3자유도 직렬형 순응기구 설계

여기서 소개한 Fig.1(a)의 순응기구의 설계를 설 명한다. [5]

 K=diag(k_x,k_y,k_o),
 (1)

 식(1)은 원하는 강성행렬이다. 대칭(symmetry)

Fig.1 (a)Planar 3-DOF serial type compliance device, (b)Strain gage

이며 양의 정부호(positive definite)이다. 세 개의 선 스프링 $\hat{s}_1, \hat{s}_2, \hat{s}_3$ 의 병렬 연결로 강성을 합성한다. 먼 저 x축과 이루는 각도와 x축 상의 한 점을 지나도록 \hat{s}_1 을 정하여 다음과 같은 식을 얻는다.

$$\begin{split} \vec{K} &\equiv K - k_1 \hat{s_1 s_1}^T = k_2 \hat{s_2 s_2}^T + k_3 \hat{s_3 s_3}^T, \quad (2) \\ \det(K - k_1 \hat{s_1 s_1}^T) &= 0, \quad (3) \\ & 4 (2) 는 계수가 2 이 며 식(3) 으로 k_1 을 얻는다. \end{split}$$

*s*₂와 *s*₃은 식(2)에서 두 개의 선형 독립인 열의 선 형 조합으로 나타낸다. 두 선이 만나는 점을 지나고 x 축과 이루는 각으로 *s*₂를 얻는다. 식(3)으로부터 *k*₂를 얻는다.

 $K^{''} \equiv k_3 \hat{s}_3 \hat{s}_3^T = K - k_1 \hat{s}_1 \hat{s}_1^T - k_2 \hat{s}_2 \hat{s}_2^T$, (4) 식(4)는 계수가 1이며 하나의 독립인 열 \hat{s}_3 을 얻는 다. k_2 은 식 (3)을 이용해 얻는다.

병렬로 연결된 선 스프링으로 합성한 강성을 직 렬형 회전 스프링으로 변화시킨다. 세 개의 선 스프 링의 각 교점이 회전 스프링의 위치가 된다. 각 회전 스프링의 강성은 다음과 같은 식으로 구한다.

$$k_{\phi} = \begin{bmatrix} k_1 (\hat{s}_{r,1}^T \Delta \hat{s}_1)^2 & 0 & 0\\ 0 & k_2 (\hat{s}_{r,2}^T \Delta \hat{s}_2)^2 & 0\\ 0 & 0 & k_3 (\hat{s}_{r,3}^T \Delta \hat{s}_3)^2) \end{bmatrix},$$
(5)

 $\hat{s}_{r,1}, \hat{s}_{r,2}, \hat{s}_{r,3}$ 는 세 개의 선 스프링의 교점을 지나

Fig.2 (a)Test bed for force measurement, (b)XY table for kinestatic control

한국정밀공학회 2010년도 추계학술대회논문집

Fig.3 (a)Force,(b) Moment test result

면서 평면에 수직인 선이다.

힌지는 다음과 같은 식으로 설계한다. [7]

k_φ = (2Ett^{5/2})/(9πr^{1/2}). (6) E는 기구의 영률, b는 두께, t는 힌지 중심 두께, r은 힌지의 반지름이다.

3. 순응기구를 이용한 힘 측정 실험

평면 3자유도 직렬형 순응기구를 이용하여 힘측 정 실험을 수행하였다. 힌지 조인트에 Fig.1(b)와 같 이 스트레인 게이지로 변형률을 측정하고 기구 끝단 의 변위를 계산하고 이를 이용하여 끝단에 작용하는 힘과 모멘트를 얻었다. 실험결과는 Fig.3과 같다. 5% 이하의 힘과 모멘트 측정 오차를 얻었다.

4. 위치/힘 동시 제어 실험

위치/힘 동시 제어는[2]에서 제시한 kinestatic 제 어 방법을 사용하였다. 순응기구는 수평힘, 수직힘, 회전 모멘트의 측정이 가능하여 Fig.2(b)의 PPR robot 끝단에 순응기구를 부착하여 비탈면을 따라 위 치/힘 동시 제어를 수행하였다. [3,4]

$$\delta \hat{D} = G_f \delta \hat{D}_f + G_c \delta \hat{D}_c. \tag{7}$$

제어 시간 : 25(sec) 입력위치:{190t/25, -50t/25,0;0,0,0}(mm;deg) 입력힘:{-4sin(15°),-4cos(15°),0;0,0,0}(N;Nmm)

Fig4. Block diagram of Kinestatic control($\delta \hat{D}_c$:twist of compliance, \hat{w}_d :input wrench, \hat{w}_a :output wrench, $\delta \hat{D}_f$:twist of freedom, \hat{D}_d :input twist, \hat{D}_a :output twist, G_c , G_t :weighting factor)

Fig.5 (a)Position control (b)Force control

실험 결과는 Fig.5 이다. 위치 오차는 작게 나타났고 힘과 모멘트은 30% 이내의 오차를 나타냈다.

5. 결론 및 토의

본 연구에서는 평면 3자유도 직렬형 순응기구를 이 용한 위치/힘 동시 제어를 구현하였다. 원하는 강성 을 갖는 순응기구를 이용한 제어를 통해 다양한로 봇 기술 분야로의 적용 가능성을 보였다. 하지만 5% 였던 순응기구 오차를 감안할 때 30%의 오차는 PPR robot의 모터 백래시 등 여러 기계적 오차로 인한 것 으로 생각되며 이를 보완하는 연구가 필요하다.

후기

이 논문은 2009년도 정부(교육과학기술부)의 재 원으로 한국장학재단의 지원을 받아 수행된 연구 임(No. S2-2009-000-02439-1)

참고문헌

- Duffy, J., "Statics and Kinematics with applications to Robotics," Cambridge University Press, 1996
- Griffis, M. W., "Kinestatic control: A Novel Theory for Simultaneously Regulating Force and Displacement," Ph.D Thesis, University of Florida, 1991
- 왕희일, "6자유도 순응기구의 지수형 게인 함수 에 의한 위치/힘 동시제어", 연세대학교 대학원, 석사학위논문, 1999
- 서정욱,최용제, "퍼지논리에 의한 순응기구의 위치/힘 동시제어", 대한기계학회춘계학술대 회 논문집, 2004
- Hong, M. B., "Reciprocal Jacobian Approach to Kinestatic Analysis of Robots and Passive Compliance Realization," Ph.D Thesis, Yonsei University, 2009
- Paros J, Weisbord L., "How to design flexure hinge", Mach. Des., 37, pp. 151-156., 1965
- Smith, S. T., "Flexures: Elements of Elastic Mechanisms", Gordon and Breach, 2000