임의의 다축기계에 대한 일반적 오차 모델링 방법

General Error Modeling Methodology for Multi-axis Systems *이동목 1, #양승한 1

*D. M. LEE¹, *S. H. YANG(syang@knu.ac.kr)¹ ¹ 경북대학교 기계공학부

Key words: Error synthesis model, Geometric error, Multi-axis system

1. 서론

가공 혹은 위치 정밀도에 대한 다축이송계의 성능 평가와 보정 작업은 기구학모델링과 동차변환행렬 등 수학적인 방법으로구한 기하학적 오차합성모델을 기반으로 하고있다 1.3 축 이상의 다축 시스템의 경우 직선혹은 회전 구동축이 어떠한 조합으로 구성되어있느냐에 따라 2 각 구조의 오차합성모델은다르게 유도되며 이 과정은 매우 많은변수들의 복잡한 계산을 요구하기 때문에 이를 분석하기 위해 행렬 축적(Matrix Summation)과같은 방법이 이용되기도 한다3.

본 연구에서는 임의의 다축 제어 기계에 대하여 구조 및 형상에 관계 없이 모든 시스템에 범용으로 적용 가능한 일반적 오차합성 모델링 기법을 소개한다.

Table 1 Kinematic Modeling Parameters

Symbols	Names	Descriptions
ОМ	Offset	Offset between two LCSs at the initial position
SM	Squareness	Non-orthogonality between two LCSs at the initial position
TM	Translation	Command for the linear axis driver
AM	Rotation	Command for the rotary axis driver
DM	Positional Error	Positional Error at the command position
EM	Angular Error	Angular Error at the command position

2. 임의의 축에 대한 오차 모델

오차합성모델을 유도하기 위해서는 각 구동축의 로컬좌표계 및 공작물좌표계, 툴 좌표계 등 기준좌표계 설정이 필요하며 Table 1 과 같이 오차 모델에 필요한 변수의 정의가 선행되어야 한다. 여기서, 각 변수들은 구동 명령값 및 오차항을 포함하는 4X4 동차변환행렬을 의미한다.

임의의 다축 기계 구조에 대한 오차 모델을 유도하기 위해서는 직선 혹은 회전 구동축에 관계없이 항상 성립할 수 있는 기구학 모델이 있어야 하므로 식 (1)과 식 (2)에 나타난 직선축과 회전축에 대한 오차 모델을 식 (3)과 같이 직선 및 회전축의 변수들을 모두 포함하는 임의의 모델로 정의할 수 있다.

$$\tau_{i-1}^{L} = \mathbf{OM} \, \mathbf{SM} \, \mathbf{TM} \, \mathbf{DM} \, \mathbf{EM} \, \Big|_{i-1}^{L} \tag{1}$$

$$\tau_{i-1}^R = \mathbf{OM} \, \mathbf{SM} \, \mathbf{DM} \, \mathbf{EM} \, \mathbf{AM} \Big|_{i-1}^R$$
 (2)

$$\tau_{i-1}^A = \mathbf{OM} \, \mathbf{SM} \, \mathbf{TM} \, \mathbf{DM} \, \mathbf{EM} \, \mathbf{AM} \, \Big|_{i-1}^A$$
 (3)

다음으로 일반화 모델링 작업을 위해 Table 1 에 열거된 변수들에 대해 아래와 같이 3X1 벡터와 3X3 서브행렬로 정의한다.

$$\mathbf{O}_{i} = \begin{bmatrix} O_{xi} & O_{yi} & O_{zi} \end{bmatrix}^{T}$$

$$\mathbf{d}_{i} = \begin{bmatrix} \delta_{xi} & \delta_{yi} & \delta_{zi} \end{bmatrix}^{T}$$

$$\mathbf{S}_{i} = \begin{bmatrix} O & -s_{zi} & s_{yi} \\ s_{zi} & O & -s_{xi} \\ -s_{yi} & s_{xi} & O \end{bmatrix}$$

$$\mathbf{E}_{i} = \begin{bmatrix} O & -\varepsilon_{zi} & \varepsilon_{yi} \\ \varepsilon_{zi} & O & -\varepsilon_{xi} \\ -\varepsilon_{yi} & \varepsilon_{xi} & O \end{bmatrix}$$

$$(7)$$

또한 각 구동축의 기계 입력값을 나타내는 변수에 대해서는 3X1 벡터 t.와 3X3 행렬 A. 로 정의한다.

3. 일반화된 오차합성모델

임의의 축에 대한 오차모델들을 활용해 Fig. 1 과 같이 정방향과 역방향에 대해 기구학 체인(Kinematic Chain)을 수립하고 유도과정에서 오차항의 곱으로 발생하는 고차항을 무시하면 최종적으로 식 (8)과 같은 결과가 얻어진다.

$$\tau_{N_I}^{N_F} = \left(\tau_0^{N_I}\right)^{-1} \tau_0^{N_F} = \left[\begin{array}{c|c} \mathbf{RTT} & \mathbf{TST} \\ \hline 0 & 0 & 0 & 1 \end{array}\right] (8)$$

여기서, TST 는 3X1 벡터, RTT 는 3X3 서브행렬을 나타내며 그 수식은 아래와 같다.

$$TST = -\sum_{l=1}^{N_{I}} \left(\sum_{j=l}^{N_{I}} \mathbf{A}_{j} \right)^{T} \left(\mathbf{o}_{i} + \mathbf{t}_{i} + \mathbf{d}_{i} \right)$$

$$+ \sum_{l=2}^{N_{I}} \left(\prod_{j=l}^{N_{I}} \mathbf{A}_{j} \right)^{T} \mathbf{S}_{i} \sum_{j=1}^{l-1} \left(\prod_{k=j}^{l-1} \mathbf{A}_{k} \right)^{T} \mathbf{t}_{j}$$

$$+ \sum_{l=1}^{N_{I}} \left(\sum_{j=l}^{N_{I}} \mathbf{A}_{j} \right)^{T} \mathbf{E}_{i} \sum_{j=1}^{l} \left(\prod_{k=j}^{l-1} \mathbf{A}_{k} \right)^{T} \mathbf{t}_{j}$$

$$+ \sum_{l=1}^{N_{I}} \left(\sum_{j=l}^{N_{I}} \mathbf{A}_{j} \right)^{T} \left(\mathbf{S}_{i} + \mathbf{E}_{i} \right) \sum_{j=1}^{l} \left(\prod_{k=j}^{l-1} \mathbf{A}_{k} \right)^{T} \mathbf{o}_{j}$$

$$+ \sum_{l=1}^{N_{I}} \left(\prod_{j=1}^{N_{I}} \mathbf{A}_{j} \right)^{T} \prod_{j=0}^{l-1} \mathbf{A}_{j} \mathbf{S}_{i} \sum_{j=l}^{N_{I}} \prod_{k=l-1}^{l-1} \mathbf{A}_{k} \mathbf{t}_{j}$$

$$+ \sum_{l=1}^{N_{I}} \left(\prod_{j=1}^{N_{I}} \mathbf{A}_{j} \right)^{T} \prod_{j=0}^{l-1} \mathbf{A}_{j} \mathbf{E}_{i} \sum_{j=l+1}^{N_{I}} \prod_{j=l}^{l-1} \mathbf{A}_{k} \mathbf{t}_{j}$$

$$+ \sum_{l=1}^{N_{I}} \left(\prod_{j=1}^{N_{I}} \mathbf{A}_{j} \right)^{T} \prod_{j=0}^{l-1} \mathbf{A}_{j} \left(\mathbf{S}_{i} + \mathbf{E}_{i} \right) \sum_{j=l+1}^{N_{I}} \prod_{k=l}^{l-1} \mathbf{A}_{k} \mathbf{o}_{j}$$

$$- \left(\sum_{l=1}^{N_{I}} \prod_{j=l}^{N_{I}} \mathbf{A}_{i} \right)^{T} \left(\mathbf{S}_{i} + \mathbf{E}_{i} \right) \left(\prod_{j=0}^{l-1} \mathbf{A}_{j} \right)^{T} \right)$$

$$\left(\sum_{l=1}^{N_{I}} \prod_{j=0}^{l-1} \mathbf{A}_{j} \left(\mathbf{o}_{i} + \mathbf{t}_{i} \right) \right)$$

$$RTT = \left(\prod_{j=1}^{N_{I}} \mathbf{A}_{i} \right)^{T} \prod_{j=0}^{N_{I}} \mathbf{A}_{j} \left(\mathbf{S}_{i} + \mathbf{E}_{i} \right) \prod_{j=l}^{N_{I}} \mathbf{A}_{j}$$

$$+ \sum_{l=1}^{N_{I}} \left(\prod_{j=1}^{N_{I}} \mathbf{A}_{j} \right)^{T} \prod_{l=1}^{l-1} \mathbf{A}_{j}$$

$$\left(\mathbf{S}_{i} + \mathbf{E}_{i} \right) \prod_{j=1}^{l-1} \mathbf{A}_{j} \mathbf{A}_{j}$$

$$\left(\mathbf{S}_{i} + \mathbf{E}_{i} \right) \prod_{j=1}^{N_{I}} \mathbf{A}_{j}$$

$$\left(\mathbf{S}_{i} + \mathbf{E}_{i} \right) \prod_{j=1}^{N_{I}} \mathbf{A}_{j}$$

$$\operatorname{PTT} = \left(\prod_{i=1}^{N_{I}} \mathbf{A}_{i}\right)^{T} \prod_{j=1}^{N_{F}} \mathbf{A}_{i}$$

$$+ \sum_{i=1}^{N_{F}} \left(\prod_{j=1}^{N_{I}} \mathbf{A}_{j}\right)^{T} \prod_{j=0}^{i-1} \mathbf{A}_{j} (\mathbf{S}_{i} + \mathbf{E}_{i}) \prod_{j=i}^{N_{F}} \mathbf{A}_{j}$$

$$- \sum_{i=1}^{N_{I}} \left(\prod_{j=i}^{N_{I}} \mathbf{A}_{j}\right)^{T} (\mathbf{S}_{i} + \mathbf{E}_{i}) \left(\prod_{j=0}^{i-1} \mathbf{A}_{j}\right)^{T} \prod_{j=1}^{N_{F}} \mathbf{A}_{j}$$

$$(10)$$

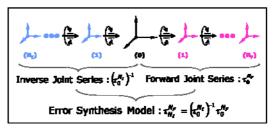


Fig. 1 Multi-axis Systems Configuration

4. 결론

본 논문에서는 임의의 다축 기계에 대해 범용으로 적용가능한 일반화된 오차모델링 방법을 소개하였다.

- 임의의 축에 대한 오차 모델을 구성하여 직선 및 회전축에 관계없이 모든 조합의 구조에 대한 오차 모델 유도가 가능함.
- 오차의 고차항을 유도과정에서 제거하여 최종식의 대입만으로 오차합성모델을 구할 수 있는 방법을 제시하였음.

후기

이 논문은 2010 년도 정부(교육과학기술부) 의 재원으로 한국연구재단의 도약연구(No. 2010-0018890)와 대학중점연구소 지원사업(No. 2010-0020089) 으로 수행된 연구임.

참고문헌

- 1. 양승한, 이철수, "5 축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘," 한국 정밀공학회지, 16, 122-129, 1999.
- 2. Kiridena, V., and Ferreira, P., "Mapping of the Effects of Positioning Errors on the Volumetric Accuracy of Five-axis CNC Machine Tools," International Journal of Machine Tools and Manufacture, 33(3), 417-437, 1993.
- 3. Lin, Y., and Shen, Y., "Modelling of Five-Axis Machine Tool Metrology Models Using the Matrix Summation Approach," International Journal of Advanced Manufacturing Technology, 21, 243-248, 2003.
- 4. 이동목, 양승한, "공작기계의 기하학적 오차 합성 모델링을 위한 수학적 분석 기법," 한국정밀공학회 추계학술대회논문집, 71-72, 2007.