미소유체이송을 위한 정밀 진공압력 발생기 Precise vacuum pressure generator for liquid transportation in microchannels

*변강일,[#]서영호,김병희

*Kang Il Byun, [#]Young Ho Seo(mems@kangwon.ac.kr), Byeong Hee Kim 강원대학교 기계·메카트로닉스 공학과

Key words : Precise vacuum pressure generator, Elastic modulus, Elastomer, Polydimethylsiloxane

1. 서론

MEMS 기술이 생명과학기술과 융합되면서 microfluidic biosensors, DNA 칩 및 단백질 칩과 같은 Lab-on-a-chips(LOCs) 분야에 매우 효과적 으로 적용되었으며, 현재 많은 연구가 이루어 지고 있다.[1,2] 이러한 bioMEMS 분야의 LOCs 는 Fluidic separator, mixer, valve 그리고 pump 와 같은 요소로 이루어져 있으며, 이 요소들은 active 방식과 passive 방식으로 나눌 수 있다. 일반적으로 active 방법은 passive 방법에 비해 더 나은 성능을 보여주지만 복잡한 제조공정을 가지고 있으며, 전원을 필요로 하기 때문에 일회용 미세유체 소자에는 적합하지 않다. 미세유체펌프의 경우 복잡한 제조공정으로 다른 요소들과 통합하기에 매우 어려움을 겪고 있으며 [3], 따라서 immune-sensor 나 biological fluidics 와 같은 일회용 미세유체 장치에서는 모세관현상을 이용하여 유체를 이송하고 있다. 모세관 현상을 이용한 유동은 접촉각에 영향을 받으며 유체를 이송시키지만, 온도나 습도와 같은 환경의 변화에도 영향을 받기 때문에 정확한 모세관력은 예측하기 어렵다. 따라서 본 연구에서는 유량을 제어할 수 있는 정밀 진공압력 발생기를 제안한다. 진공압력 발생기 는 단지 polydimethylsiloxane (PDMS) casting 공정으로 제작된 탄성챔버에 의해 압력을 제어 할 수 있다.

2. 본론

Fig. 1 은 진공압력 발생기에 의한 유체이 송의 작동 원리에 대한 개략도이다. 작동원리 는 일회용 피펫과 유사하지만 진공압력 발생기 는 탄성챔버의 부피와 탄성률을 변화시켜 흡입 압력을 제어할 수 있다. 탄성챔버는 원통형과 반구형, 두 개의 다른 형상으로 제작되었다. 챔버의 직경, r, 챔버상부 플레이트의 두께, t, 챔버의 높이, h, 가 실험의 변수이며, table 은 각

실험에 대한 치수이다. 진공압력 발생기는 유량을 측정하기 위하여 미세채널 (폭 300 µm, 높이 100 µm , 길이 125mm)과 함께 설계하였으며, PDMS casting 방법에 의해 제작되었다. Fig.2는 제작된 흡입압력 발생기를 보여준다. 흡입압력은 실리콘 압력센서 사용하여 (MPXV6115VC6U, Motorola)를 측정하였다. PDMS 의 탄성률은 pre-polymer 와 curing agent 의 비율로 변화시킬 수 있다. 이를 변형시킨 Exp. 1 의 결과 Fig.3 에서 보여지듯이 탄성률이 증가함에 따라 흡입압력이 증가하는 것을 볼 수 있으며, 9:1 비율에서 가장 높은 압 력이 측정되었다.[4] Exp. 2 에서는 챔버 상부 플레이트의 두께를 변화시켜 압력을 측정하였으며, 그 결과 두께의 변화에 비해 압력의 변화는 매우 작은 것으로 보아, 두께는 흡입압력의 크기에 큰 영향을 미치지 않는 것을 알 수 있다. 탄성챔버의 부피에 따른 Exp. 3,4 에서는 챔버 부피가 증가함에 따라 흡입 압력은 40kPa 까지 증가하였다. Fig.4 는 EXP. 3.4 의 결과이며 두 가지 형태의 챔버가 같은 높이를 가졌을 때 챔버의 부피는 반구형 챔버

 Table 1. Dimension and shape of the elastomeric chamber in the suction pressure generator.

Exp.ID	r	h	t	Mixing ratio	Chamber shape
Exp.1	5mm	0.1mm	3mm	4:1 6:1 8:1 9:1 10:1	
Exp.2	5mm	0.1mm	3mm 5mm 10mm	10:1	\bigcirc
Exp.3	5mm	0.1mm 1.1mm 2.1mm	3mm	10:1	
Exp.4	5mm	0.1mm 1.1mm 2.1mm	3mm	10:1	

가 더 작지만 비슷한 압력을 발생시키는 것을 볼 수 있다. 또한 붉은 잉크를 섞은 탈 이온수를 흡입하여 평균유량을 측정하였는데, 이 결과는 Fig. 5 와 같고, 11.5±1.7 µl/min 에서 160.8±9.2 µl/min 까지 선형적으로 증가하는 것을 볼 수 있다. 이 흡입압력 발생기는 미세유체 혼합기에 적용되었으며, 0.1M phen olphthalein 과 0.3M sodium hydroxide 를 동시에 흘려 준 결과 성공적으로 두 개의 유체를 이송시킬 수 있었으며 혼합되는 모습을 확인하였다.

3. 결론

본 연구에서는 진공압력 발생기를 설계 하고 제작하였으며 실험을 통하여 특성을 확인 하였다. 또한 제안한 진공압력 발생기의 탄성률과 챔버의 부피, 챔버의 형상에 따라 흡입 압력을 선형적으로 제어할 수 있었다. 따라서 일회용 진공압력발생기가 미세유체장치의 압력원으로서 가능함을 실험적으로 확인하였다.

Fig.1 Working principle of the fluid transportation by the suction pressure generator.

Fig.2 Photograph of the fabricated suction pressure generators.

후기

본 연구는 교육과학기술부와 한국산업기술진흥 원의 지역혁신인력양성사업과 2010 년 정부(교 육과학기술부)의 재원으로 한국연구재단(지역 거점연구단육성사업/의료바이오 신소재 융복합 연구사업단)의 지원을 받아 수행된 연구입니다.

참고문헌

- 1. G.S. Fiorini and D.T. Chiu, Bio Techniques 38, 429-466 (2005)
- P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam and B.H. Weigl, Nature, 442, 412-418 (2006)
- 3. D.J. Laser and J.G. Santiago, J. Micromech. Microeng. 14, R35-R64 (2004)
- 4. K. Khanafer, A. Duprey, M. Schlieht, R. Berguer, Biomed Microdevices, 11:503-508 (2009)

Fig.3 Generated suction pressure vs. mixing ratio of the PDMS. (Exp.1)

Fig.4 Generated suction pressure vs. volume and shape of the internal chambers. (Exp.3, 4)

Fig.5 Flow rate vs. generated suction pressure curve.