한국정밀공학회 2010년도 추계학술대회논문집

이은주입시 주입을에 따른 PMOS 트렌지스터의 특성 연구

Study of characteristic of surface channel PMOS transistor

with dose rate of ion implantation *이중급¹, #양지월², 이영호³, 석중규³

*J. K. Lee¹, [#]J. C. Yang(jichul.yang@samsung.com)², Y. H. Lee³, J. K. Seok³ ¹ 삼성전자공과대학교 반도체공학과, ²삼성전자공과대학교, ³삼성전자

Key words : dose rate, surface channel PMOS, contact resistance, plug effect

1. **서론**

고집적화 소자의 형성에 있어 source/drain의 shallow junction과 전류 구동력을 크게 하기 위해 source/drain과 direct contact의 contact resistance 감소와 ohmic contact을 형성하는 것에 대한 중요성이 부각되고 있다.[1] 일반적으로 doping 농도가 증가하면 면 저항이 감소하지만, shallow junction이 요구되는 고집적화 DRAM 소자 에서는 doping 농도의 증가가 제한된다. 최근 PMOS transistor의 plug 이온주입에 사용되는 boron의 경우는 열처리 후, transient enhanced diffusion(TED) 현상으로 PMOS transistor의 p+/n의 shallow junction을 형성하기 어렵다는 것을 확인 하였다. Boron의 TED 현상은 wafer cooling temperature와 dose rate에 의해 차이가 나타나기 때문에 후속 공정 barrier metal deposition에서 TiSi2의 성장에 영향을 준다. [2~5] 본 연구에서는 dose rate에 따라 silicon damage를 열처리 전/후 로 확인하였다. 뿐만 아니라 dose rate 변화가 contact resistance, DC-GP length에 따른 threshold voltage 변화를 ET를 통해 확인하였다.

2. 실험

```
1. 실험방법 및 내용
```

실험의 이온주입 공정 조건은 동일하며 low dose rate(A), high dose rate(B)으로 각각 실험을 한다.

1.1 Bare wafer 면 저항 측정
1.2 Bare wafer TW 측정
1.3 Pattern wafer ET 측정
2. 실험 결과
2.1 Bare wafer 면 저항 측정 결과

Bare n-type wafer에 boron 이온주입 후 N2, 1000℃, 30sec로 열처리를 하고 VR-120/SD 장비로 면 저항을 측정하였다. 면 저항은 A 조건에서 158.05ohm/sq, B 조건에서 158.45ohm/sq로 두 조 건에서 유사한 결과를 통해 이온의 도핑농도와 깊이가 동일하다는 결과를 얻었다.

2.2 Bare wafer TW 측정 결과

Bare p-type wafer에 이온주입 전과 boron 이온주입 후, 1차와 2차 열처리 후 TP-603 장비로 thermal wave(TW)를 통해 silicon damage를 측정하였다. 이온주입 전(initial) TW(A.U)는 유사한 결과를 얻었다. 이온주입 후(As-implant) TW는 B > A의 결과를 얻었다. 결과를 통해 B 조건에서 damage를 상대적으로 많이 받았음을 확인하였다. N2, 1020℃, 1sec의 1차 열처리 후(After Spike RTA)의 TW는 A > B의 결과를 얻었다. 결과를 통해 B 조건에서 damage 회복이 많이 됨을 확인하였다. N₂/NH₃, 830℃, 60sec 열처리 후(After BM RTN)의 TW는 A > B의 결과를 얻었다. 결과를 통해 이온주입 후 B 조건에서 damage를 많이 받았으나 열처리 과정 동안 damage가 A 조건보다 많이 회복되어 TW가 낮음을 확인하였다. 실험 결과는 Fig.1과 같다.

한국정밀공학회 2010년도 추계학술대회논문집

Pattern wafer에서의 ET 측정 항목은 contact 저항, GP-DC 길이에 따른 threshold voltage(Vth) 를 측정하였다. Contact 저항은 3가지 항목을 측정 하였으며, 3가지 항목 측정 결과가 A > B로 A 조건에 서 높은 결과를 얻었다. Contact 저항 차이는 dose rate에 따른 이온주입 및 열처리 후에 silicon damage 차이가 나타남에 따라 후속 공정에서의 TiSi2의 성장에 영향을 주는 것으로 사료된다. 실험결과는 Fig.2와 같다.

Fig.2 Result of PMOS contact resistance at pattern wafer.

GP-DC 길이에 따른 threshold voltage(Vth) 측정은 short과 long GP-DC의 Test Element Group(TEG)에서 측정하였다. 실험 결과 long GP-DC에서는 Vth가 동일한 결과를 얻었다. Short GP-DC에서의 Vth는 A < B로 dose rate에 따라 차이가 있음을 확인하였다. GP-DC간의 길이 변화에 따라 Vth가 변화는 plug 이온주입 및 열처리 후의 과정에서 boron의 channel쪽으로 확산하여 source/drain 영역이 확장됨에 따라 gate에 의해 조절되는 channel 영역 내의 전하가 감소하는 SCE(short channel effect)에 의해 나타나는 것으로 사료된다. 실험 결과는 Fig.3과 같다.

Fig.3 Result of long and short GP-DC PMOS threshold voltage.

본 논문은 이온주입 시 dose rate에 따른 surface

channel PMOS transistor 특성에 관한 연구이다. High dose rate에서 contact 저항이 낮고, short DC-GP length에서 PMOS threshold voltage가 상대적으로 높은 결과를 확인하였다. Low dose rate에서 contact 저항이 높아지고 short DC-GP length에서 threshold voltage가 낮아짐을 확인하였다. 본 연구에서는 이온주입 후 격자 손상을 측정하여 이온주입에 의한 비정질 두께를 간접적으로 확인할 수 있었으며 열처리 후의 격자 손상을 측정함으로써 격자 손상 제거 정도를 확인할 수 있었다. 열처리 후의 격자 손상은 2차 defect으로 남아 direct contact 형성을 다르게 하고 열처리에 후에 plug dopant의 확산 정도를 다르게 되어 PMOS의 threshold를 변화시키는 plug 효과가 나타나는 것으로 사료된다. Scale-down이 지속될수록 dose rate를 높게 할수록 contact 저항은 감소하고 plug 이온주입에 인한 threshold voltage 감소는 적게 될 것이다. 반면 dose rate를 낮게 할수록 contact 저항은 증가, plug 이온주입으로 threshold voltage가 감소하는 현상으로 transistor 특성 변화가 예상된다. 따라서, dose rate에 의해서 대한 지속적인 연구가 필요할 것으로 사료된다.

참고 문헌

1. Semiconductor Physics and Device : Basic Principles, Third Edition, Donald A.Neamen, Page. 528~532 2. 이준하, 이흥주, "Nano-Scale MOSFET 소자의 Contact Resistance 에 대한 연구." 한국 산학 기술 학회 논문지, 5, 13-15, 2004 3. Tae-Hoon Huh, Byung-Jae Kang, "A Study of Implanted BF2 as a Function of Wafer Temperature During Implant," AIP Conference Proceedings, 1066, 87-90, 2008 4. Nathalie Cagnat, "Defect Behavior in BF2 Implants For S/D Applications as a Function of Ion Beam Characteristics," AIP Conference Proceedings, 866, 133-136, 2006 5. Kil-Ho Lee, Jong-Choul Kim, "Formation of ultra-shallow p+-n junction through the control of ion implantation-induced defects in silicon substrate," Journal of The Korean Vacuum Society, 6, 326-36, 20