가스터빈 블레이드용 열차폐 코팅의 열-기계피로 수명 평가 Evaluation of Failure Life of Thermal Barrier Coating applied Gas Turbine by Thermo-Mechanical Fatigue Test

*신인환¹, 이동근¹, 구재민¹, #석창성¹, 이택운²

*I. H. Shin¹, D. K. Lee¹, J. M. Koo¹, [#]C. S. Seok(seok@skku.edu)¹, T. W. Lee² ¹성균관대학교 기계공학과 ²하정KPS G/T정비기술센터

Key words: Thermal Barrier Coating, Failure Life, Thermo-Mechanical Fatigue, In-Phase, Out-of-Phase

1. 서론

가스터빈의 고온부품의 표면에 적용되고 있는 열차폐 코팅(Thermal Barrier Coating; TBC)은 부품 표면에 고온·고압의 화염의 열이 직접적으로 전달 되는 것을 막아주어 부품의 고온 열화 및 산화를 방지하는 역할을 한다. 열차폐 코팅은 MCrAIY 합 금으로 이루어진 제1 코팅층(Bond Coat; BC)과 안 정화된 지르코니아(Yittiria Stabilized Zirconia; YSZ)로 이루어진 제2코팅층(Top Coat; TC)으로 이 루어진다. 가스터빈의 고온부품 중 회전운동을 하 는 블레이드에 적용된 열차폐 코팅의 경우, 고온화 염에 의한 열피로와 고속회전으로 인한 기계피로 에 노출되어 있으며, 열차폐 코팅의 파손 시 모재의 고온 산화 및 부식이 급속히 진행된다. 따라서 고온 부품의 신뢰성을 평가하기 위해서는 금속 모재뿐 만 아니라 열차폐 코팅을 포함한 열차폐 코팅 시스 템의 신뢰성을 고려하여야 한다. 지금까지 열차폐 코팅의 열피로(Thermal Fatigue; TF)에 관한 연구는 많이 이루어져 왔지만, 열차폐 코팅의 열-기계피로 에 의한 수명 평가에 관한 연구는 거의 이루어지지 않았다. 이에 본 연구에서는 가스터빈 블레이드에 적용되는 열차폐 코팅의 열-기계 피로시험을 통해 열차폐 코팅의 파손 수명 및 특성 변화를 평가하고 자 한다.

2. 코팅 시험편 및 TMF 시험장치

열기계 피로에 따른 열차폐 코팅의 파손 수명을 평가하기 위하여 중공형(Hollow)의 코팅 시험편을 제작하였다. 시험편 모재 재질은 상용 블레이드의 재질과 동일한 GTD-111이며, 시험편의 평행부에 상용 열차폐 코팅을 적용하였다. Table 1에 시험편모재의 재질을 나타내었으며, Table 2에 코팅층의

재질 및 적용방식, 두께를 정리하여 나타내었다.

Table 1 Nominal Composition of GTD111(wt%)

Ni	Со	Cr	W	Mo
Bal.	9.5	14	3.8	4.5
Ti	Al	С	В	Ta
4.9	3	0.1	0.01	2.8

Table 2 Composition of TBC of specimen

Layer	Material	Coating Type	Thickness
TC	7~8% ZrO2-Y2O3	APS	598µm
BC	Co32Ni21Cr8Al0.5Y	LVPS	250μm
Substrate	GTD111		3mm

Fig.1 The facility for TMF test

열-기계피로 시험 장치는 직접 가열 방식의 분리 형 퍼니스와 냉각공기 유닛, 하중 부과장치로 구성 되어 있다. 퍼니스의 발열량과 냉각공기 분사량을 동시에 제어하여 시험편에 삼각형태의 열피로를 부과하면서, 열피로 파형 주기와 동일한 인장/압축 피로 시험을 할 수 있도록 제작하였으며, Fig. 1에 시험 장치를 나타내었다. TMF시험 사이클의 주기는 1200s이며, 시험편의 열피로 온도 범위는 40 0℃~800℃로 정하였다. 이를 이용하여 코팅 시험편의 동상(In-Phase) 및 역상(Out of Phase) 열-기계피로 시험을 수행하였다.

3. 시험 결과

Table 3에 세 가지 최대 변형률 조건에 대한 동상 및 역상 열기계 피로시험 결과를 정리하여 나타내 었다. 시험 결과, 동일한 변형률 구간에서 시험편의 최대 인장/압축 응력이 동상 TMF에 비해 역상 TMF 에서 상대적으로 크게 나타났다. 이는 온도파형과 180° 위상차가 발생하는 역상 TMF 시험에서, 온도 에 따른 시험편의 팽창/수축 현상과 반대로 인장/압 축 형태의 하중을 부과함에 따른 것으로 판단된다. 따라서 총변형률에서 시험편의 열피로에 따른 열 변형률을 보상하여 기계변형률을 구하였으며, 이 를 이용하여 Fig. 2에 열-기계 피로에 따른 열차폐 코팅의 파손 수명을 나타내었다. IP TMF 및 OP TMF에 따른 열차폐 코팅의 수명을 평가한 결과, 0.85~0.76%의 기계변형률 구간에서 열차폐 코팅의 OP TMF에 따른 파손 수명이 2~65 사이클이었으며, 0.75~0.67% 기계변형률 구간에서 IP TMF에 따른 파손 수명이 45~390 사이클이었는데, 동일한 기계 변형률에서 OP TMF 조건에 비해 짧은 파손 수명을 가지는 것으로 나타났다. 이는 IP TMF 시험에서 고온 환경에서 시험편에 인장하중을 부과함에 따 라 시험편의 고온 부식이 급속히 진행되어 OP TMF 에 비해 빨리 파손된다고 알려진 B.Baufeld[1]의 연구 결과와 유사한 경향을 나타내었다.

Table 3 Results between IP TMF and OP TMF

Test Type of TMF	Amplitude of Total Strain (%)	Max. Tensile Stress (MPa)	Max. Compression Stress (MPa)
	0.75	912	-911
IP	0.65	859	-879
	0.6	735	-811
OP	0.6	914	-912
	0.55	863	-774
	0.5	850	-765

또한 상용 가스터빈 블레이드의 최대 변형률은 약 0.65%로 알려져 있으며[2], 이를 Fig.2에 나타낸 결과 열차페 코팅의 파손 수명이 IP TMF 조건에서 약 750 사이클, OP TMF 조건에서는 약 3,400 사이클로 평가되었다. 이를 통해 동일한 온도 및 하중피로조건이라 할지라도, 피로 파형에 대한 각각의 위상차에 따라 열차페 코팅의 파손 수명이 달리평가되어야 함을 알 수 있었으며, 향후 90° 및 270°에 대한 TMF 시험을 수행하여 열기계 피로 파형의위상차가 코팅 수명에 미치는 영향에 대하여 평가할 예정이다.

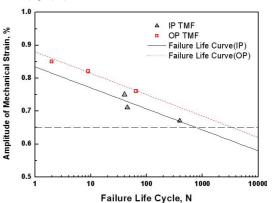


Fig.2 Failure life of TBC by IP TMF and OP TMF

4. 결론

열차폐 코팅에 대하여 IP TMF 및 OP TMF시험을 수행하여 각각의 시험조건에 따른 최대 응력상태 및 기계변형률을 평가하고, 코팅 파손 수명을 비교 분석하였다. 분석 결과 TMF 시험의 열-기계 피로 파형 위상차에 따른 코팅 파손 수명 평가가 중요한 것으로 판단되며, 향후 추가시험을 통해 TMF 위상차에 따른 코팅 수명을 평가할 예정이다.

후기

본 연구는 2단계 두뇌한국 BK21사업과 지식경제부의 지원에 의하여 기초전력연구원 주관으로 수행된 과제임.(2008T100100272)

참고문헌

- 1. B.Baufeld 외 5인, "Thermal-mechanical fatigue of MAR-M 509 with a thermal barrier coating", Materials Sci. and Eng. A, 105, pp. 231-239, 2001.
- 2. N.Holcombe, Life Management System for Advanced F Class Gas Turbines, EPRI, 2005.