스크래치 방지용 Strip Pressure Key의 개발 Development of Strip Pressure Key for the Prevention of Scratch ^{**}김태완¹

*[#]T. W. Kim(tw0826@pknu.ac.kr)¹ ¹부경대학교 기계공학과

Key words : Pressure Key, Scratch, Sheet Metal

1. 서론

일반적으로 금속 판재의 프레스 가공 시 사용되 는 판재 이송장치에는 판재를 눌러 프레스 장치까 지 가이드 해주기 위한 누름키(Pressure Key)가 장 착되어 있다. 이중에서 제관용 관재 이송장치의 경우 누름키에 대해 수직 방향 및 수평방향으로 판재가 미끄럼이 발생하는 형태이다. 지금까지 사 용되어온 판재 누름키의 형상은 Fig. 1과 같이 블록 일체형으로 누름키 후면에서 스프링으로 가압하 여 판재의 과다 이송 및 위치 방지 역할을 수행한다. 그러나 이와 같은 형상의 누름키는 판재가 수직방 향으로 이송할 때 넓은 접촉면적을 가져 스크래치 가 유발될 가능성이 많고 끝단부에는 edge effect에 의한 압력 스파이크를 유발할 수 있는 설계 형상이 다.[1] 또 판재가 Strip Pressure Key에 대해 수평방향 으로 이송할 때는 슬라이딩 접촉이 좁은 접촉 폭에 서 지속적으로 발생하는 구조로 Fig. 2에서 보인 바와 같은 깊은 스크래치가 발생시킨다.

따라서 본 연구에서는 프레스 가공을 위한 판재 의 수직 및 수평 이송 과정에서 누름키가 롤링 (rolling) 타입으로 눌러서 가이드 함으로써, 끝단 접촉부에 모서리 효과발생을 최소화하고 판재에 스크래치 발생을 최소화하여 판재 가공 제품의 표면 불량을 방지할 수 있는 스크래치 방지용 테이 퍼 롤링형 판재 누름키를 개발하고자 하였다.

2. 스크래치 방지 설계

본 연구에서는 판재 이송시 누름키에서 발생하 는 스크래치를 방지하기 위해 Fig. 3과 같이 수직방 향으로의 접촉면적을 줄이면서 수평방향으로 슬 라이딩 접촉을 피할 수 있도록 누름키 내부에 두 개의 테이퍼 진 롤러를 설치하는 구조로 설계하였 다. 축과 롤러 사이에는 니들 베어링을 장착하여 안정성과 내구성을 확보하도록 하였다.

Fig. 1 Block type strip pressure key

Fig. 2 Scratch on can end surface

Fig. 3 Developed rolling type pressure key

3. 실험방법 및 결과

누름키의 스크래치 시험을 위해 마멸 시험기를 사용하였고 접촉 형태는 Fig. 4에서와 같이 핀에 고정된 Strip Pressure Key이 주석판 위를 슬라이딩 될 때의 마찰력을 측정하고 광학현미경 및 표면조 도기를 확용하여 표면 손상을 분석하였다.

기존의 블록형 누름키와 개선된 테이퍼 롤링형 누름키에 대하여 각각 수직(Transversal) 방향과 수 평(Longitudinal) 방향으로 스크래치 실험을 수행하 였다. 판재의 슬라이딩 속도는 100EPM급 Can End 제조 시스템에서 적용될 판재의 이송속도를 적용 하여 1.6 m/s로 설정하였으며 하중은 누름키에 가 해지는 10N으로 실험을 실시하였다.

Fig. 5는 두 종류의 누름키에 대해 판재와 수직방 향으로 이송될 때를 모사한 스크래치 시험 시 마찰 계수 및 판재의 표면거칠기를 측정한 결과이다. 슬라이딩 초기에 정지 상태의 마찰을 극복하기 위한 높은 마찰계수가 관찰되며 이후 안정적인 마찰계수가 나타남을 확인할 수 있다. 블록형 누름 키는 약 0.3 정도의 정지마찰계수 이후 0.25 정도의 마찰계수가 나타났으나 테이퍼 롤링형 누름키에 대해서는 0.2 이하로 상대적으로 낮은 마찰계수가 나타남을 알 수 있다. 블록형 누름키에 의한 수직 이송 시 판재의 마멸형상은 상당히 깊은 스크래치 가 발생하였고 최대 표면 거칠기 값이 약 6.1 µm 정도로 나타남에 비해, 테이퍼 롤링형 누름키의 경우 육안으로 미세한 스크래치가 확인되었으나 최대 표면 거칠기 값이 약 23 µm 정도로 스크래치 발생 기준에는 약간 못 미치는 것으로 확인되었다.

Fig. 6에는 대한 판재의 수평방향 이송시의 마찰 계수 및 판재의 표면 거칠기 측정 결과를 도시한 것이다. 블록형 누름키에 비해 테이퍼 롤링형 누름 키는 마찰계수가 0.02정도로 매우 낮게 나타남을 확인할 수 있으며 스크래치 마멸 형상 역시 육안으 로 구분이 거의 안 될 정도의 매우 미세한 스크래치 만이 관찰되었다.

Fig. 4 Scratch test

4. 결론

본 연구에서는 판재이송장치에 사용되는 누름 키의 스크래치 방지를 위한 설계 개선을 수행하였 다. 블록형 누름키에 비해 수직방향으로의 접촉면 적을 줄이면서 수평방향으로 슬라이딩 접촉을 피 할 수 있도록 누름키 내부에 두 개의 테이퍼 진 롤러를 설치하는 구조로 설계된 테이퍼 롤링형 누름키가 스크래치를 확연히 줄일 수 있음을 알 수 있었다.

Fig. 5 Friction coefficient and surface roughness (Transversal movement)

(longitudinal movement)

후기

본 과제는 중소기업청 산학공동기술개발사업에 의해 지원된 과제임.

참고문헌

 Hutchings, I. M., Wang, P. Z. and Parry, G. C., "An optical method for assessing scratch damage in bulk materials and coatings," Surface and Coatings Technology, 165, 186-193, 2003.